PROGRAM

A platform for exploring developments in rice genetics and their applications 6th International Rice Genetics

6th International Rice Genetics Symposium

and

7th International Symposium on Rice Functional Genomics

Organizer:

Co-Organizer and RG6 Secretariat:

16-19 November 2009

Manila Hotel Manila, Philippines

www.ricegenetics.com

Arize

Jomorrow's Rice

BAYER) Bayer CropScience

BioScience

16, rue Jean-Marie Leclair F-69266 Lyon Cedex 09 – France

www.bayercropscience.com

Arize[®] enquiries:/arize@bayercropscience.com Arize® is a Registered Trademark of Bayer

Content

Acknowledgments	2
Event Features	
Floor Plan	4-5
Conference Agenda	6-15
Listing of Poster Abstracts	16-48
General Information	49-52
Optional Post-Symposium Tour	53-56

Note from Publisher

While every care has been taken to authenticate the information published in this Program, the Organizers cannot be held responsible for any omission or inaccuracy found in this Program. Information is correct at the time of printing.

Advice to Attendees

Attendees are strongly advised not to distribute any literature or printed materials within the event premise.

Published by:

205 Henderson Road #03-01 Henderson Industrial Park, Singapore 159549 Tel: +65 6319 2668 Fax: +65 6319 2669

Local Organizing Committee

David Mackill	Abdelbagi Ismail
Hei Leung	Ken McNally
Darshan Brar	Casiana Vera Cruz

ISRFG Organizing Committee

Hei Leung Gynheung An Apichart Vanavichit Bin Han David Ho Emmanuel Guideroni Hirochika Hirohiko Ko Shimamoto Narayana Upadhyaya

Rod Wing Venkatesan Sundaresan Qifa Zhang Antonio Oliveira

Acknowledgments

The 6th International Rice Genetics Symposium and 7th International Symposium on Rice Functional Genomics have gained the support of renowned rice research organizations from around the world, bringing international recognition and prestige to this event.

The International Rice Research Institute (IRRI) and IIR Special Events Group would like to extend our sincere appreciation to all our sponsors and media for their support and effort in bringing the 6th International Rice Genetics Symposium and 7th International Symposium on Rice Functional Genomics to its current high status:

Supporting Sponsors

Session Sponsor

Official Media

Supporting Media

Co-Sponsor

Funding Sponsors

Australian Government Australian Centre for International Agricultural Research

United States Department Of Agriculture Agricultural Research Service

United States Agency for International Development (USAID)

Evening Workshops

Date : Tuesday, 17 November 2009

Time : 2000-2200

Venue : Pandanggo/Polkabal

Fee : Free for all delegates

Knowledge-sharing workshops, chaired by leading experts, are organized specifically for delegates who will benefit from in-depth discussion on special topics in rice genetics. Please refer to the conference agenda for more details.

Conference Dinner

Date : Monday, 16 November 2009

Time : 1915

Venue : Centennial Hall

Fee : Free for all delegates

This exclusive evening, special for all attendees, promises abundant opportunities for knowledge exchange and networking, and will feature a special program.

Exhibition

- Day 1 : Monday, 16 November 2009
- Day 2 : Tuesday, 17 November 2009

Day 3 : Wednesday, 18 November 2009

Time : 0930-1700

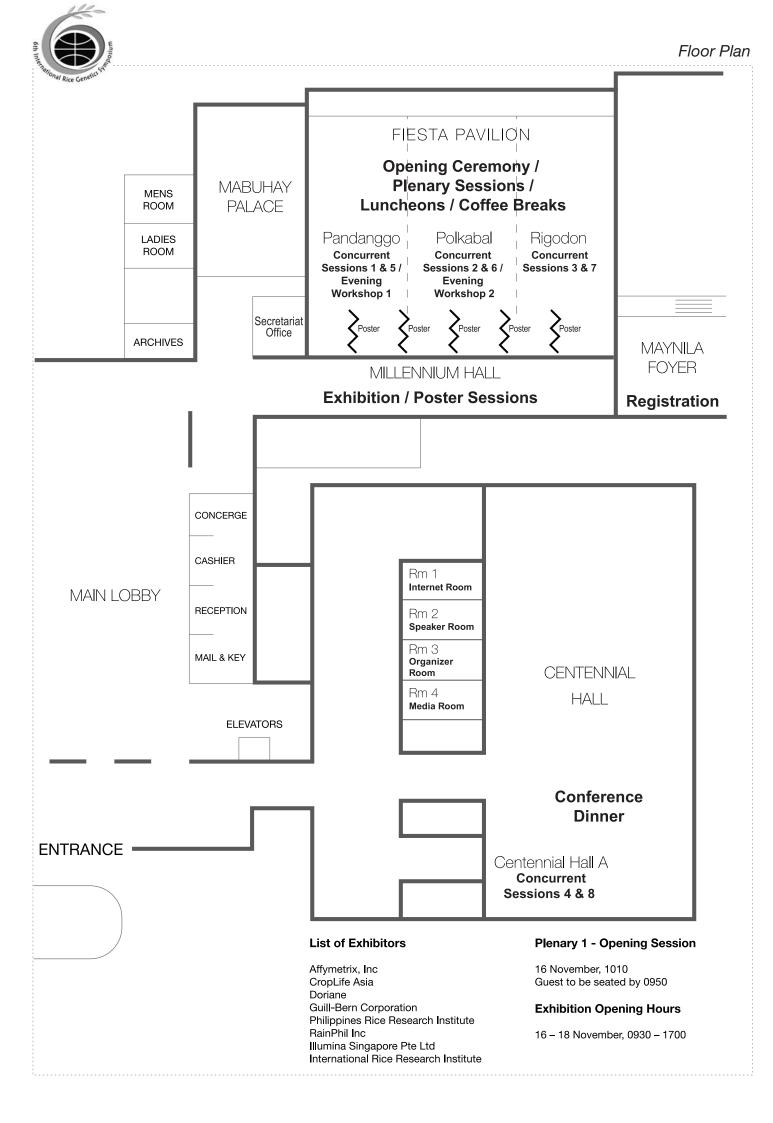
Venue : Millennium Hall

Fee : Free for all participants

The exhibition will showcase the latest technology and introduce potential customers to new products. It offers an international platform for networking and market penetration opportunities within the rice industry.

Field Tour

Date : Thursday, 19 November 2009


Time : 0630-1430

Fee : Free for all delegates

Venue : International Rice Research Institute, Los Baños

Itinerary :

Time	Agenda	
0630	Depart Manila	224 3
0800	Arrive at IRRI Los Baños	
0805	Welcome by Dr. R.S. Zeigler, Director General	
0815-1130	Guided Tour-Rice Experimental Plots/Facilities	NE -
1200	Lunch at Khush Hall (courtesy of IRRI)	2412
1315-1430	Free time	9,360
1430	Depart for Manila	6 1 10

Conference Agenda

Date	Time	Session	Venue
Sun, 15 Nov	0900-1700	Arrival and registration	Maynila Foyer
Mon, 16 Nov	1010-1200	Plenary 1-Opening session	Fiesta Pavilion
	1200-1315	Lunch	Fiesta Pavilion
	1315-1530	Plenary 2	Fiesta Pavilion
	1530-1715	Plenary 3	Fiesta Pavilion
	1715-1915	IRFGC business meeting	Fiesta Pavilion
	1915	Conference dinner	Centennial Hall
Tues, 17 Nov	0820-1025	Plenary 4	Fiesta Pavilion
	1025-1210	Plenary 5	Fiesta Pavilion
an dian .	1210-1300	Lunch	Fiesta Pavilion
	1300-1500	Poster session 1	Fiesta Pavilion & Millennium Hall
	1500-1820	Concurrent sessions	
No. 1		Concurrent 1 – Evolutionary genetics	Pandanggo
		Concurrent 2—Genome structure	Polkabal
		Concurrent 3—Disease and insect resistance	Rigodon
		Concurrent 4-Abiotic stress tolerance	Centennial Hall A
21 M. Hall	2000-2200	Evening workshops	
		Temperate rice	Pandanggo
		International Oryza map alignment project (I-OMAP)	Polkabal
Wed, 18 Nov	0820-1025	Plenary 6	Fiesta Pavilion
NAME	1025-1210	Plenary 7	Fiesta Pavilion
13.24	1210-1300	Lunch	Fiesta Pavilion
1828	1300-1500	Poster session 2	Fiesta Pavilion & Millennium Hall
STANK.	1500-1755	Concurrent sessions	A MARK
		Concurrent 5-Translational genomics	Pandanggo
	- NACEN	Concurrent 6-Developmental genetics	Polkabal
		Concurrent 7—Grain quality and nutrition	Rigodon
		Concurrent 8-Breeding applications	Centennial Hall A
Thurs, 19 Nov	0630	Depart for IRRI field tour (optional)	ABAR LA VAL

Conference Agenda

Date	Time	Session
Sun, 15 Nov	0900-1700	Arrival and registration
		Discourt Operation Operation
Mon, 16 Nov		Plenary 1–Opening Session Chair: David Mackill
	1010 1000	
	1010-1020	Welcome and Introduction of HRH Princess Sirindhorn of Thailand
	1020-1040	Special Presentation by HRH Princess Sirindhorn of Thailand
	1040-1125	Keynote Presentation: Rice genetics and its impact in a changing world
		Robert Zeigler
		IRRI, Philippines
	1125-1200	The future of rice genomics: sequencing the collective Oryza genome
		Rod Wing
		University of Arizona, USA
	1000 1015	
	1200-1315	Lunch
		Plenary 2 Session
		Chair: Manjit S. Kang
		Leveraging model angiosperm genomics for the understanding and
	1315-1350	improvement of orphan cereal crops
		Jeff Bennetzen
		University of Georgia, USA
	1350-1425	Exploring the genetic diversity of rice
		Susan McCouch
		Cornell University, USA
1		High-throughput resequencing of the rice genome to study TE-related
	1425-1500	genome dynamics in grasses
11		Olivier Panaud
10000		University of Perpignan, France
- A. M. A. G. O	1500-1530	Coffee Break
r - 38 6 100		
1/36363/6		Plenary 3 Session
1.5.1.	1500 1005	Chair: Achim Dobermann
11.00	1530-1605	Activation tagging for stress tolerance and plant nutritional traits
1000		Gyn An Pohang University of Science and Technology, Korea
		r onang oniversity of ocience and rechnology, Norea
	1605-1640	Developmental dynamics of small RNAs in rice
		Venkatesan Sundaresan
Cesting and		University of California-Davis, USA
1 / A / A		NAME TO A DURA AND SUBBORISE
A CARE TO A	1640-1715	Iron uptake and loading in the rice grain
	MR AS 4	Naoko Nishizawa
AND	1921 1 1 1	The University of Tokyo, Japan

	1715-1915	International Rice Functional Genomics Consortium business meeting
	1915	Conference Dinner
Tues, 17 Nov		Plenary 4 Session
		Chair: Takuji Sasaki
	0820-0855	Next-generation sequencing to discover the genome diversity of rice germplasm
		Bin Han
		Chinese Academy of Sciences, China
	0855-0930	Function of histone modification in rice epigenetic regulation
		Daoxiu Zhou
		Université Paris, France
	0930-1005	Innate immunity in rice
11.1		Ko Shimamoto
		Nara Institute of Science and Technology, Japan
	1005-1025	Coffee Break
See 28		Plenary 5 Session
		Chair: to be confirmed
	1025-1100	Genetics and mechanisms of tolerance to flooding
		Julia Bailey-Serres
		University of California-Riverside, USA
	1100-1135	Salt and drought stress signaling pathways
1063 127 11	- 19/201/20	Jian-Kang Zhu
	en de la constance	University of California-Riverside, USA
1. 1.1/3	1135-1210	GA signaling pathways for yield traits in rice
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Makoto Matsuoka
ALL SOM	<u>()) (2)</u>	Nagoya University, Japan
	1210-1300	Lunch
	1300-1500	Poster session 1
	1500-1820	Concurrent sessions
		Concurrent 1
STREAM		Evolutionary Genetics
A State of the	N / N (N N	Convener: Michael Purugganan
		Co-convener: Ken McNally
	1500-1525	Genome evolution in Asian rice: the legacy of 9,000 years of selection
100 M 200		Jonathan Flowers
	-30 V/	New York University, USA
		SNP analysis and genetic diversity along the rice genome (HaplOryza
	1525-1550	project)

	Claire Billot
	CIRAD, France
1550-1615	Towards a rational use of African rice (Oryza glaberrima Steud.) for breeding in Sub-Saharan Africa
	Moussa Sié
	Africa Rice Center, Benin
1615-1640	
	Ken Olsen
	Washington University, USA
	Genetic studies on interspecific hybrid sterility between Oryza sativa and
1640-1705	its AA genome species
	Dayun Tao
	Yunnan Academy of Agricultural Sciences, China
1705-1730	Utilization of core collection as Japanese national bio-resources and
1705-1730	complement with de novo collection
	Ryuji Ishikawa
	Hirosaki University, Japan
1730-1755	Molecular mapping of two loci conferring F ₁ pollen sterility in inter- and
	intraspecific crosses of rice Khin Thanda Win
	Kyushu University, Japan
1755-1820	Analysis of genetic diversity and redundancy of the Philippine rice
	germplasm collection by DNA fingerprinting
	Vivian A. Panes
	PhilRice, Philippines
	Concurrent 2
1	Genome Structure
	Convener: Nori Kurata
	Co-convener: Darshan Brar
1500 1505	Conome evolution and reproductive berriers in rise
1500-1525	Genome evolution and reproductive barriers in rice Nori Kurata
	National Institute of Genetics, Japan
1525-1550	Sequence analysis to elucidate mechanisms of evolution in the rice
	genome Takashi Matsumoto
	National Institute of Agrobiological Sciences, Japan
1550-1615	Organization of genes in the rice genome and its synteny with other
	species
	N.K. Singh
	Indian Agricultural Research Institute, India
1615-1640	The prolamins of rice and their orthologs in other cereals
	Joachim Messing



		Rutgers University, USA
	1640-1705	Dynamics of <i>Oryza</i> genome evolution: a genus-wide analysis of <i>Adh1- Adh2</i> orthologous regions
		Jetty S.S. Ammiraju
		Arizona Genomics Institute, USA
	1705-1730	Structural evolution of a domestication locus and repetitive DNA sequences in the genus <i>Oryza</i>
		Scott Jackson
		Purdue University, USA
	1730-1755	Genomewide SNP patterns reveal historical and recent introgressions in <i>Oryza</i>
		Ken McNally
		IRRI, Philippines
		Concurrent 3
	the second states	Disease and Insect Resistance
		Convener: Shiping Wang
		Co-convener: Casiana Vera Cruz
-	1500-1525	Molecular basis of durable and broad-spectrum resistances to diseases
	1000 1020	Shiping Wang
		Huazhong Agricultural University, China
	1525-1550	Genetic analysis of resistance to leafhoppers and planthoppers in rice
		Hideshi Yasui
1024-5		Kyushu University, Japan
<u> </u>	1550-1615	QTL meta analysis and genomics of blast resistance
	1550-1615	Jean Benoit Morel
/ / / /		INRA, France
1 5	1615-1640	Molecular characterization of BPH resistance
		Guangcun He
		Wuhan University, China
A 12	1040 1705	
	1640-1705	Dissecting QTL: the genes that contribute to disease resistance revealed
-		Jan E. Leach
		Colorado State University, USA
	1705-1730	Functional genomics of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> African strains
O ALT		Valérie Verdier
R. S. C.	THE TOP TANK	IRD, France
	C ARTSA AN	
	1730-1755	Cloning of <i>Bph18</i> gene for BPH resistance
	BANGS IN	Kshirod K. Jena
57.9 E	10 10 10 L	IRRI, Korea
Sector Sector	<u>100 100 100 100 100 100 100 100 100 100</u>	Consumment (
		Concurrent 4
1		Abiotic Stress Tolerance
1000		Convener: Julia Bailey-Serres Co-convener: Abdelbagi Ismail
States and the second		oo oontonon Abacibagi laman

Conference Agenda

4500 4505	
1500-1525	Snorkel locus and deepwater elongation growth
	Motoyuki Ashikari
	Nagoya University, Japan
1525-1550	Kinases involved in anaerobic germination in rice
	Su-May Yu
	Academia Sinica, Taiwan
1550-1615	Can we make a "smart sensing" and "better performing" rice for saline and dry lands?
	Ashwani Pareek
	Jawaharlal Nehru University, India
1615-1640	Transcriptome-based analysis of genetic variation for salt tolerance in cereals with specific focus on rice
	Xinping Cui
	University of California-Riverside, USA
1040 1705	
1640-1705	Development of drought-resistant rice "OsSKIP story"
	Lizhong Xiong
	Huazhong Agricultural University, China
1705-1730	Stress tolerance and grain yield of transgenic rice plants
	Ju-Kon Kim
	Myongji University, Korea
1730-1755	Genetic and molecular approaches to address heat tolerance during
	anthesis in rice
	S.V.K. Jagadish
	IRRI, Philippines
2000-2200	Evening Workshops
	Workshop 1
	Temperate Rice
	Convener: K.K. Jena
1. 1. 1.	Map-based cloning and molecular breeding of <i>pi21</i> , a non-race-specific gene with resistance to blast
	S. Fukuoka
	Hybrid breakdown genes and their implications for the evolution of rice
1	Hee-Jong Koh
	Genome-wide SNP discovery among temperate japonica rice cultivars and its application
	Kaworu Ebana
	Cold tolorance: a key trait for improving water productivity of rise is south
THE HALL	Cold tolerance: a key trait for improving water productivity of rice in south eastern Australia
	C. Ye

al Rice Genetics		
al Rice Gener		Workshop 2
		International Oryza Map Alignment Project (I-OMAP)
		Convener: Rod Wing
		Wild Rice Resource Project in Japan and its Perspectives
		Nori Kurata
		The International Oryza Map Alignment Project: towards a reference
		sequence for the collective <i>Oryza</i> genome Rod Wing
		Repeat structure of the Oryza
		Olivier Panaud
		Comparative analysis of centromere 8 across the diploid Oryza
		Scott Jackson
		Genomic structure and evolution of the Pi2/9 locus in wild rice species
		Guoliang Wang
100		Deepwater rice breeding by QTL pyramiding
		Moto Ashikara
Wed,18 Nov		Plenary 6 Session
Wed,18 Nov		Plenary 6 Session Chair: Emmanuel Guiderdoni
Wed,18 Nov	BAYER]	
	0820-0855	Chair: Emmanuel Guiderdoni Bayer CropScience
		Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic
		Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research
		Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar
	0820-0855	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang
	0820-0855	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice
	0820-0855	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China
	0820-0855	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang
	0820-0855	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals
	0820-0855	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals Sandra Milach
	0820-0855 0855-0930 0855-0930 0930-1005	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals Sandra Milach Pioneer, USA Coffee Break
	0820-0855 0855-0930 0855-0930 0930-1005	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals Sandra Milach Pioneer, USA Coffee Break Plenary 7 Session
	0820-0855 0855-0930 0930-1005 1005-1025	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals Sandra Milach Pioneer, USA Plenary 7 Session Chair: Hei Leung
	0820-0855 0855-0930 0855-0930 0930-1005	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals Sandra Milach Pioneer, USA Coffee Break Plenary 7 Session
	0820-0855 0855-0930 0930-1005 1005-1025	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals Sandra Milach Pioneer, USA Coffee Break Plenary 7 Session Chair: Hei Leung Advances in the integration of genomics into breeding in rice
	0820-0855 0855-0930 0930-1005 1005-1025	Chair: Emmanuel Guiderdoni Bayer CropScience Wild species: a valuable genetic resource for rice breeding and genomic research Darshan Brar IRRI, Philippines Heterosis and yield potential in rice Qifa Zhang Huazhong Agricultural University, China Molecular breeding strategies for cereals Sandra Milach Pioneer, USA Coffee Break Plenary 7 Session Chair: Hei Leung Advances in the integration of genomics into breeding in rice Masahiro Yano

		Ohio State University, USA
	1135-1210	Applications of genomics to rice breeding, with emphasis on transgenic crops
		Usha Zehr
		Mahyco, India
	1210-1300	Lunch
	1300-1500	Poster session 2
	1500-1715	Concurrent sessions
		Concurrent 5
		Translational Genomics
		Convener: Andy Pereira
		Co-convener: Ajay Kohli
	1500-1525	Systems biology of rice
	1500-1525	Pankaj Jaiswal
		Oregon State University, USA
		Cregon State Oniversity, OSA
	1525-1550	Key regulators for rice anther development
		Dabing Zhang
1.510		Shanghai Jiao Tong University, China
		Structural patterns of regulatory genome sequences in rice and other
	1550-1615	grasses
11/100		Antonio Costa de Oliveira
-		Federal University of Pelotas, Brazil
	1615-1640	Root development and P-uptake in rice
1100		Sigrid Heuer
	1/2	IRRI, Philippines
1	1640-1705	Development and application of gene-specific markers for rice blast
	1040-1703	Joong Hyoun Chin
155		IRRI, Philippines
1.12		VARIANS AND
314	1705-1730	Marker-assisted introgression of QTL yld2.1 or sub-QTL regions from Or <i>rufipogon</i> increases yield of KMR3 and derived hybrid
36.3	In the stress stress	Sarla Neelamraju
		Directorate of Rice Research, India
	1730-1755	Large-scale phenotyping of a collection of T-DNA insertion lines of rice
	The Port of the And	Mathias Lorieux
-	C / KI SIN N	CIAT, Colombia
		Concurrent 6
11/18		Developmental Genetics
Cont S		Convener: Srinivasan Ramachandran
	A AV BA	Co-convener: Hei Leung

	1500-1525	Functional genomics of rice pollen development by <i>Ds</i> insertion mutagenesis
		Srinivasan Ramachandran
		Temasek Life Sciences Laboratory-National University of Singapore, Singapore
	1525-1550	Small RNAs associated with development and environmental responses
		Pamela Green
		Delaware Biotechnology Institute, USA
	1550-1615	Transcriptome analysis at different developmental stages of rice in response to water stress
		Shoshi Kikuchi
		National Institute of Agrobiological Sciences, Japan
	1615-1640	Brittle phenotype conferred by overexpression of AtHOG1 gene in rice
		Prakash Kumar
		National University of Singapore, Singapore
	1640-1705	Brassinosteroid homeostasis via the coordinated activation of both BRI1 and biosynthetic genes in rice
		Chang-deok Han
		Gyeongsang National University, Korea
	1705-1730	Evolutionary conservation of regulatory pathways controlling ovule development between <i>Arabidopsis</i> and rice
		Ludovico Dreni
		University of Milan, Italy
		Concurrent 7
		Grain Quality and Nutrition
		Convener: Matthew Morell Co-convener: Melissa Fitzgerald
	1500-1525	QTLs associated with milling yield
		Anna McClung
		USDA ARS-Stuttgart, USA
	1525-1550	Proteomic characterization of rice bran
-	14 BUILDESS	Arthur Z. Wang
Sale of		National Chung-Hsing University, Taiwan
1925	1550-1615	Genetics of aroma
		Mariafe Calingacion
		IRRI, Philippines
	1615-1640	Genetics of low GI in rice
	1	Vito Butardo
Care S		CSIRO Food Futures Flagship, Australia
	1640-1705	QTL analysis for eating quality in temperate Korean japonica rice variety llumbyeo
	OF THE OF A	Young-Chan Cho

	National Institute of Crop Science-RDA, Korea
1705-1730	Validation of molecular markers linked to starch synthesizing enzymes associated with amylose content, gelatinization temperature and gel consistency in rice (<i>Oryza sativa</i>)
	N. Shobha Rani
	Directorate of Rice Research, India
	Concurrent 8
	Breeding Applications
	Convener: A.K. Singh
	Co-convener: Parminder Virk
1500-1525	Pyramiding multiple QTLs using SNP-based Breeding-by-design
1000 1020	Apichart Vanavichit
	Kasetsart University, Thailand
1525-1550	GM approaches for rice improvement
	Xun Wang
	Syngenta Biotechnology, China
1550-1615	Rising ozone levels pose a new threat to yield stability in rice: Tolerance mechanisms and underlying genetic factors
	M. Wissuwa
	JIRCAS, Japan
1615 1640	Constinue on honorment of Respectivity through melocular approaches
1013-1040	Genetic enhancement of Basmati rice through molecular approaches
	A.K. Singh
	Indian Agricultural Research Institute, India
1640-1705	Breeding rice for abiotic stress tolerance
KUS 74.4	Baboucarr Manneh
	Africa Rice Center, Benin
1705-1730	Monsanto's Beachell-Borlaug International Scholars Program for PhD students in rice and wheat breeding
	Ed Runge
	Texas A&M University, USA
1705-1730	A generalized molecular-quantitative genetics model for dissecting genetic networks underlying complex phenotypes: the theory, predictions and demonstrations
Marsh M	Zhikang Li
	IRRI, China
0630	Depart for IRRI field tour (optional)
	1525-1550 1550-1615 1550-1615 1615-1640 1640-1705 1640-1705

Poster Number	Title	Authors
	Session 1: Functional gen	omics
P1-1	A multifunctional rice germin like protein	N.K. Tsakirpaloglou, A.M.R. Gatehouse, A. Kohli
P1-2	A novel class of gibberellin 2-oxidases control semidwarfism, tillering and root development in rice	Shuen-Fang Lo, Show-Ya Yang, Ku-Ting Chen,Yue-le Hsing, Jan A.D. Zeevaart, Liang-Jwu Chen, Su-May Yu
P1-3	Accelerate the breeding of new rice varieties with preharvest sprouting resistance: isolation and characterization of preharvest sprouting mutants in rice	Jun Fang, Chengcai Chu
P1-4	An effective approach for identification of in vivo protein–DNA binding sites from paired- end ChIP-Seq data	Congmao Wang, Jie Xu, Dasheng Zhang, Zoe A Wilson, Dabing Zhang
P1-5	An exploratory study using EMS mutagenesis of sorghum to create C4-deficient mutants	R.T. Mogul, M.A. Dionora, A.E. Mabilangan, F.R. Danila, K.R. Tan, P.P. Pablico, A.T. Lape, J. Sheehy, P. Quick
P1-6	An insight of aromatic gene: from rice to soybean and other plants	Siwaret Arikit, Tadashi Yoshihashi, Samart Wanchana, Sugunya Wongpornchai, Apichart Vanavichit
P1-7	Analysis and expression of a gene encoding threonine synthase from rice in thrC mutant of <i>Escherichia coli</i>	Md.Shafiqul Islam Sikdar, Jung-Sup Kim
P1-8	Characterization of a gene trapped phosphatase protein 2C rice mutant in response to various abiotic stresses	Swee-suak Ko, Yih-Jong Huang, Chai-Wei Kuo, Su-May Yu
P1-9	Cloning and characterization of tissue- and/ or stress-specific expression promoter from T-DNA tagged rice mutants	Wen-Lii Huang, Jeng-Chung Lo
P1-10	Deep sequencing of the root transcriptome of a wild species of rice, <i>Oryza longistaminata</i>	Haiyuan Yang, Liwei Hu, Thomas Hurek, Barbara Reinhold-Hurek
P1-11	Development and application of 96 and 384-plex SNP sets for diversity analysis and mapping in rice.	M.J. Thomson, K. Zhao, K. Wright, Ma. Y. Reveche, J. Rey, M.A. Rahman, K.L. McNally, H. Leung, S.R. McCouch
P1-12	Effect of ozone on the growth response of AtNDPK-induced transgenic rice lines	Soo-Kwon Park, Norvie L. Manigbas, Dong-Soo Park, Sung- Tae Park, Woon-Ha Hwang, Sang- min Kim, Hoejeong Wang, Min-Hee Nam, Moo-Young Eun, Young-Min Woo, Doh-Hoon Kim, Chang-Deok Han, Hang-Won Kang, Sang-Yeol Lee, Gihwan Yi
P1-13	Establishment of high-throughput screening for activation-tagged rice mutants derived from japonica varieties Dongjin and Tainung 67	G. Dimayuga, A.B. Feldman, R. Mogul, M. Baraoidan, M. Dionora, M. San Pedro, A. Lape, A. Elmido- Mabilangan, H. Leung, P. Quick, G. An, Caroline Hsing, Su-may Yu

Poster Number	Title	Authors
P1-14	Exploratory study on gamma ray mutagenesis in sorghum (BTx623) to install "C4ness" in rice	F.R. Danila, K.T. Acebron, M.J.A. Dionora, P.P. Pablico, A.E. Mabilangan, R.T. Mogul, J.E. Sheehy, W.P. Quick
P1-15	Flowering induction pathway in rice	Kim SL, Cho LH, Jeong HJ, Lee YS Ryu CH , An G
P1-16	Functional validation of novel gene OsCDPK31 through over-expression and silencing in rice	Balachandran Sena M, Manimaran P, Akshaya Kumar Biswal
P1-17	'Gold Standard' experiments:photosynthesis and leaf anatomy of sorghum, maize and rice	A.E. Mabilangan, J.C. Revilleza, R.T Mogul, J.A. Dionora, J.E. Sheehy, W.P. Quick
P1-18	Genome-wide gene expression profiling reveals effects of <i>Sub1</i> locus in genes programmed carbohydrate utilization under flash flooding	Vinitchan Ruanjaichon, Apichart Vanavichit
P1-19	High throughput low CO ₂ screening for reduced photosynthetic compensation points in rice.	A. Lape, M.J. San Pedro , M.J.A. Dionora, R.T. Mogul, J.M. Orlina, I. Canicosa, W.P. Quick
P1-20	Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice	Haiyan Ye, Hao Du, Ning Tang
P1-21	Interaction and cellular localization of Rad51 paralogs in rice	Mi Young Byun, Gynheung An, Woo Taek Kim
P1-22	Laying the foundations for a C4 rice	M.J.A. Dionora, A.E. Mabilangan, R.T. Mogul, F.R. Danila, P.P. Pablico A.T. Lape, G. Dimayuga, J.E. Sheehy, W. Paul Quick
P1-23	Major QTLs for grain yield under drought in the background of mega varieties	P. Vikram, Ma. T. Sta Cruz, M. Espiritu, M. Del Valle, A.K. Singh, A. Kumar
P1-24	Map-Based cloning and functional analysis of <i>Sdr4</i> , a quantitative trait locus controlling seed dormancy in rice.	Kazuhiko Sugimoto, Yoshinobu Takeuchi, Ebana Kaworu, Hirohiko Hirochika, Masatomo Kobayashi, Hattori Tsukaho, Akiko Yamamoto, Kanako Ishiyama, Naho Hara, Masahiro Yano
P1-25	Mapping of the glabrous gene in rice using CSSLs derived from the cross <i>Oryza</i> <i>sativa</i> subsp. japonica cv. Koshihikari x <i>O.</i> <i>glaberrima</i>	Rosalyn B. Angeles-Shim, Kenji Asano, Tomonori Takashi, Hidemi Kitano, Motoyuki Ashikari
P1-26	Molecular approaches in studying the <i>Bph1</i> locus for resistance to brown planthopper (<i>Nilaparvata lugens</i> Stal) through representational difference analysis	Dong-Soo Park, Soo-Kwon Park, Sung-Tae Park, Norvie L. Manigbas Woon-Ha Hwang, Sang-min Kim, Hoejeong Wang, Min-Hee Nam, Moo-Young Eun, Young-Min Woo, Doh-Hoon Kim, Chang-Deok Han, Sang-Yeol Lee, Gihwan Yi, Hang- Won Kang

17

Poster Number	Title	Authors
P1-27	Overexpression of a cellulase gene in rice toward application to the cellulosic-ethanol production	Mutsumi Nigorikawa, Yukihiro Ito
P1-28	Phenotype and functional analysis of rice somaclonal variants derived from seed culture	Young-Hie Park, Moo-Young Eun, Kyung-Min Kim, Jae-Keun Sohn
P1-29	Regulatory signatures of orthologous stress- related bZIP transcription factors based on phylogenetic footprint	Benildo G. de los Reyes, Fuyu Xu, Myoung Ryoul Park, Bijayalaxmi Mohanty, Venura Herath, Song Joong Yun
P1-30	Rice functional genomics study using the Taiwan Rice Insertional Mutagenesis (TRIM) Population	Shuen-Fang Lo, Yue-le Hsing, Chyr-Guan Chern, Liang-Jwu Chen, Su-May Yu
P1-31	Root and shoot transcriptome analysis of rice (<i>Oryza</i> spp.) for Fe/Zn homeostasis genes using semi quantitative RT-PCR.	Girish Chandel, Shubha Banerjee
P1-32	Single nucleotide polymorphism and haplotype diversity in the rice sucrose synthase 3	Puji Lestari, Gi-An Lee, Tae-Ho Ham, Reflinur Basyirin, Mi-Ok Woo, Rihua Piao, Wenzhu Jiang, Sangho Chu, Joohyun Lee, Hee-Jong Koh
P1-33	Sodium azide mutagenesis: a new indica type and waxy rice variety, TNSW21, was developed from a japonica type variety, TNG67	Tung-Hai Tseng, Toong-Long Jeng, Chang-Sheng Wang
P1-34	The DNA polymorphisms discovery of AS (Anthranilate Synthase) by TILLING and capillary electrophoresis detection from irradiated rice mutant population	Dong Sub Kim, Jae Beom Jeon, Jae Young Song, Jin-Baek Kim, Sang Hoon Kim, Si-Yong Kang
P1-35	The RicE FUnctional GEnomics (REFUGE) platform, an international hosting platform for elucidating gene function using rice as a model system	Delphine Mieulet, Pauline Mayonove, Murielle Portefaix, Pierre Larmande, Alain Ghesquière, Emmanuel Guiderdoni
P1-36	Tolerance of rice species to a range of abiotic stresses	Brian Atwell, Gayani Gammulla, Michael Mariani, Mehdi Mirzaei, Karlie Neilson, Andrew Scafaro, Paul Haynes, Tom Roberts, Qinxiang Liu
P1-37	Transcriptome profiling of rice in response to bacterial blight pathogen <i>Xanthomonas oryzae</i> pv oryzae	J.S. Barraquias, C.M. Vera Cruz, P.H. Goodwin, R.P. Mauleon, M.G.Q. Diaz, I.R. Choi1, K. Satoh, S. Kikuchi
P1-38	Zebra-Necrosis, a novel thylakoid-bound protein, is required for chloroplast biogenesis and efficient repair of photodamaged photosystem II during leaf development	Nam-Chon Paek, Jung-Hoon Yoo, Sung-Hwan Cho
P1-39	AGPase activity and expression in developing rice grains	T. Anjana, N. Sarla, R. Sirdeshmukh
P1-40	Rice HD2 histone deacetylase gene, <i>OsHDT1</i> is involved in histone deacetylation required for regulation of flowering time and resulting in heterosis.	Chen Li, Limin Huang, Yongzhong Xing, Caiguo Xu, Daoxiu Zhou

Poster Number	Title	Authors
P1-41	OIP30, a DNA helicase, is likely a substrate for the pollen-predominant <i>OsCPK26</i> in rice	Cheng-Wei Wang, Wei-Ming Leu
P1-42	Chromosomal mapping of QTL associated with low panicle number in rice	Tung-Hai Tseng, Chang-Sheng Wang, Ching-Chi Tsai, Yong-Kai Lin, Jun-Ying Zhu, Wei-Ming Leu
P1-43	A rice non-endosperm tissue expression promoter (OsTSP I) and the use thereof	Fengshun Song, Li Li, Xuzhong Lu, Ying Wu, Meimei Wang, Xiao han Li, Yuping Lu, Jianbo Yang
P1-44	The generation and characterization of insertional mutant population induced by Ac/ Ds-mediated gene tagging system in rice.	Gang-Seob Lee, Doh-Won Yun, Sung-Han Park, Ung-Han Yoon, Chang-Kug Kim, Suk-Man Kim, Byung-Ohg Ahn, Hyeon-So Ji, Moo-Young Eun, Yong-Hwan Kim, Yong-Hwan Kim
P1-45	Molecular approaches in studying the <i>Bph1</i> locus for resistance to brown planthopper (<i>Nilaparvata lugens</i> Stål) through representational difference analysis	Dong-Soo Park, Soo-Kwon Park, Sung-Tae Park, Norvie Manigbas, Woon-Ha Hwang, Sang-min Kim, Hoejeong Wang, Min-Hee Nam, Moo-Young Eun, Young-Min Woo, Doh-Hoon Kim, Chang-Deok Han, Sang-Yeol Lee5, Gihwan Yi, Hang- Won Kang
P1-46	Mapping of <i>dp1</i> and <i>dp2</i> (depressed palea 1 and 2) genes related to morphogenesis of rice palea.	Itsuro Takamure, Ayano Chiba, Ren Nakai, Hironori Nagano, Yoshio Sano
P1-47	Knockdown of candidate yield genes in elite Malaysian indica rice (<i>Oryza sativa</i> L.) cv. Mr219 and Malaysian wild rice <i>O. rufipogon</i> IRGC105491 through an RNAi approach	Jennifer Ann Harikrishna, Sivakumar Paramasivam, Yee Song Law
P1-48	Mapping of <i>rp</i> gene (retarded panicle) affecting development of panicle and spikelet in rice	Kosuke Shioaku, Ayano Chiba, Ren Nakai, Hironori Nagano, Yoshio Sano, Itsuro Takamure
P1-49	Evaluation and utilization of useful agricultural characters for transgenic rice on breeding.	Lai Ming-Hsin, Chern Chyr-Guan, Yen Hsin-Mu, Jwo Woei-Shyuan
P1-50	The BWMK1-interacting protein OsPT8 negatively regulates resistance to bacterial blight pathogen in rice	Liangying Dai, Ling Liu, Jia Gao, Sujun Pan, Yajun Hu, Jinling Liu, Pingyong Sun, Qiong Luo, Saijun Liu, Nan Jiang, Xionglun Liu, Guoliang Wang
P1-51	Diversity of <i>orf79</i> , a CMS-associated mitochondrial gene of BT-CMS, in NIAS global rice cultivar core collection and Oryza rufipogon.	Mari Yamada, Sota Fujii, Kinya Toriyama
P1-52	Rice 14-3-3 protein GF14e negatively regulates cell death and resistance to bacterial blight	Myron Bruce, Patricia Manosalva, Hei Leung, Jan E Leach
P1-53	Functional study of rice Jumonji C domain containing gene <i>JMJ704</i>	Ping Jin, Hee Joong Jeong

Poster Number	Title	Authors
P1-54	Characterization of rice germin-like protein gene promoters	Tariq Mahmood, Tayyaba Yasmin, M. Zeeshan Hyder, S. M. Saqlan Naqvi
P1-55	<i>DTD1</i> gene is involved in rice tapetum degeneration and pollen development	Xingwang Li, Qifa Zhang, Changyin Wu
P1-56	Allelic gene identification from the <i>Pi2/</i> <i>Pi9</i> locus involved in broad-spectrum blast resistance in rice	Xionglun Liu, Nan Jiang, Jun Wu, Suhua Wang, Zhiqiang Li, Yajun Hu, Liangying Dai, Guoliang Wang
P1-57	Fine mapping of the giant embryo gene Ge2 in rice	Shun-Hui Chiang, Yong-Pei Wu, Yann-Rong Lin
P1-58	Constitutive expression of two genomic DNA fragments coding for os-NADH-GOGAT1 and os-NADH-GOGAT2 separately in rice caused co-suppression and affected nitrogen and carbon metabolism	Yongen Lu
P1-59	Map-based cloning and characterization of a new spotted leaf 28 mutant in rice (<i>Oryza sativa</i> L.)	Yongli Qiao, Wenzhu Jiang, Min- Seon Choi, Rihua Piao, Sang-Ho Chu, Mi-Ok Woo, JooHyun Lee, Hee-Jong Koh
P1-60	Sodium azide mutagenesis: Retrofits are retrotransposed in mutants of TNG67 rice variety	Yu-Chia Hsu, Tung-Hai Tseng, Chang-Sheng Wang
P1-61	Microcolinearity between Oryza rufipogon and Oryza sativa at the yld1.1 Locus	Beng-Kah Song, Chi-Khoon Yong, Kalaovani Nadarajah, Wickneswari Ratnam
P1-62	Detail analyses of rice anther transcriptomes	Yue-ie Hsing, Anthony Huang, Ming- der Huang, Fu-jin Wei, Cheng-Cheih Wu
P1-63	CAX1 (Arabidopsis H+/Ca2+antiporter) transgenic plants of rice: major agronomic characters, and signal transduction	Hyun-Suk Lee, Tae-Heon Kim, Hee-Young Jung, Jae-Keun Sohn, Kyung-Min Kim
P1-64	Physiological response and transcriptome profiling responding to salinity in salt tolerant rice mutants	Dong Sub Kim, Sang Jae Lee, Jae Young Song, Jae Beom Jeon, Jin- Baek Kim, Sang Hoon Kim, Si-Yong Kang, Yong-Gu Cho1, Hye-Jung Lee, Sailila Abdula
P1-65	Gene expression profiling in a high amino acid accumulating rice mutant	Dong Sub Kim, Jae Young Song, Jae Beom Jeon, Jin-Baek Kim, Sang Hoon Kim, Si-Yong Kang, Yong-Gu Cho, Hye-Jung Lee, Sailila Abdula
	Session 2: Developmental g	enetics
P2-1	A loss-of-function allele of phytochromobilin synthase gene completely eliminates photoperiod sensitivity	Hiroki Saito, Yoshihiro Yoshitake, Yutaka Okumoto, Takatoshi Tanisaka
P2-2	Carbon Starved Anther (CSA) encoding a MYB domain protein regulates sugar partitioning required for rice pollen development	Hui Zhang, Wanqi Liang, Xijia Yang, Xue Luo, Ning Jiang, Hong Ma, Dabing Zhang

Poster Number	Title	Authors
P2-3	Characterization of a rice Mitochondrial Iron Transporter (MIT)	Y. Ishimaru, K. Bashir, M. Fujimoto, G. An, N. Tsutsumi, J. Kaplan, H. Nakanishi, N.K. Nishizawa
P2-4	Hd3a protein, a major component of florigen, is a mobile branching signal in rice.	Hiroyuki Tsuji, Chika Tachibana, Shojiro Tamaki, Reina Komiya, Ko Shimamoto
P2-5	Identification and expression analysis of PIN genes in rice	Yui Miyashita, Tomoaki Takasugi, Yukihiro Ito
P2-6	Maize <i>TB1</i> and <i>OsTB1</i> gene regulate the tiller development in rice	MinSeon Choi, Eun-Byeol Koh, Mi-Ok Woo, Tae-Ho Ham, Hee-Jong Koh
P2-7	OSH15 homeobox gene acts as a degradation switch of separation layer cells in seed shattering of rice.	Saeko Konishi, Hirokazu Takahashi, Sakiko Hirose, Yutaka Sato, Mikio Nakazono, Fumio Takaiwa, Takeshi Izawa
P2-8	OsIDD14 (<i>Oryza sativa</i> ID (Indeterminate) domain 14) regulates shoot gravitropism in rice	Chang-deok Han, GuoKui Wang, SoonJu Park
P2-9	OsMADS6 disruption acts to keep making flowers	Ryuji Ishikawa
P2-10	Rice-specific Mitochondrial Iron-Regulated gene (MIR) plays an important role in iron homeostasis	Y. Ishimaru, K. Bashir, M. Fujimoto, G. An, R.N. Itai, N. Tsutsumi, H. Nakanishi, N.K. Nishizawa
P2-11	The AGL6-like gene <i>OsMADS6</i> regulates floral organ and meristem identities in rice	Haifeng Li, Wanqi Liang, Ruidong Jia, Changsong Yin, Jie Zong, Hongzhi Kong, Dabing Zhang
P2-12	The SEPALLATA-like gene <i>OsMADS34</i> is required for rice inflorescence and spikelet development	Xingchun Gao, Wanqi Liang, Changsong Yin, Shenmin Ji, Hongmei Wang, Xiao Su, Chunce Guo, Hongzhi Kong, Hongwei Xu, Dabing Zhang
P2-13	A chromatin remodeling factor OsTRX1 modulates flowering time	Sang Chul Choi, Heebak Choi, Gynheung An
P2-14	Identification of QTLs for mesocotyl elongation in rice (<i>Oryza sativa</i> L.)	Hyun-Sook Lee, Kazuhiro Sasaki, Tadashi Sato
P2-15	Identification of a novel gene regulating phyllotaxy in rice	Jun-ichi Itoh, Yasuo Nagato
P2-16	Genetics analysis of fertility restoration of cytoplasmic male sterility in rice	Nadali Bagheri, Nadali Babaeian Jelodar
P2-17	PETER PAN SYNDROME (PPS) gene regulates juvenile-adult phase transition in rice.	Tanaka Nobuhiro, Sentoku Naoki, Itoh Jun-ichi, Nagato Yasuo
P2-18	Characterization of rice lesion mimic mutants and proteome analysis of Spotted Leaf 6	Sang Gu Kang, Mohammad Nurul Matin, Hanhong Bae, Savithiry Natarajan
P2-19	Functional analysis of <i>CROWN ROOTLESS5</i> gene, which regulates crown root formation in rice.	Yuka Kitomi, Hiroko Itoh, Hidemi Kitano, Yoshiaki Inukai

Poster Number	Title	Authors
P2-20	Fine mapping of a twisted hull mutant in rice (<i>Oryza sativa</i> L.)	Jinbo Li
	Session 3: Disease and insect	resistance
P3-1	A genetic study on broad-spectrum resistance of rice landrace Haoru to standard differential rice blast <i>Magnaporthe oryzae</i> (Couch and Kohn) isolates from the Philippines	Y. Koide, M.J. Telebanco-Yanoria, Y. Fukuta, N. Kobayashi
P3-2	Characterization of new blast <i>Magnaporthe</i> <i>oryzae</i> (Couch and Kohn) isolates from the Philippines by international blast designation system and application to genetic studies on rice resistance	M.J. Telebanco-Yanoria, Y. Koide, F. dela Peña, Y. Fukuta, N. Kobayashi
P3-3	Detection of major resistance genes to the brown planthopper at the same genomic region on rice chromosome 6	Jirapong Jairin
P3-4	Development of brown planthopper (BPH) resistant new rice lines through wide hybridization using wild rice species <i>Oryza</i> <i>nivara</i>	Ponna Vattage Hemachandra, Nawarathna Mudiyanselage Anoma Nawarathna, Dissanayake Wijesinghe Arachchilage Jayasiri Dissanayake, Wijegedara Mudiyanselage Upamali Sumuduni Geethika
P3-5	Gene pyramiding through marker assisted selection (MAS) for durable gall midge resistance in rice	K. Himabindu, V.S.A.K. Sama, R.M. Sundaram, B.C. Viraktamath, J.S. Bentur
P3-6	Gene silencing reveals a role for oxalate oxidase in partial resistance to fungal pathogens	Rebecca M. Davidson, Seweon Lee Rustie Robison, Myron Bruce, Gay Carrillo, Casiana Vera Cruz, Jan Leach
P3-7	Genetic screening and molecular cloning of a rice mutant that suppresses the BTH-induced, NH1-mediated lesion mimic and defense response	Mawsheng Chern, Rebecca Bart, Deling Ruan, Wing Hoi Sze-To, Pamela Ronald
P3-8	Genetic variability in aflatoxin producing Aspergillus flavus strains of discolored rice	C. S. Reddy, K. R. N. Reddy, G. S. Laha, B. C. Viraktamath
P3-9	Genotypic and phenotypic variations in <i>Rhizoctonia</i> species associated with rice sheath blight complex in the Philippines	J.S. Lore, I.P. Oña, N.P. Castilla, J.C. Reyes, M.R.G. Burgos, L. Willocquet, S. Savary, C.M. Vera Cruz
P3-10	Identification, molecular mapping of a novel, dominant bacterial blight resistance gene from <i>O. nivara</i> and marker-assisted introgression of the gene into Samba Mahsuri	P. Natarajkumar, K. Sujatha, G.S. Laha, K. Srinivasa Rao, B.C. Viraktamath, B. Mishra, C.S. Reddy, Y. Hari, S.M. Balachandran, T. Ram, R.M. Sundaram
P3-11	Introgression of genes for blast resistance from African rice (<i>Oryza glaberrima</i> Steud.) into indica rice (<i>O. sativa</i> L.)	J. M. Ramos, I. P. Oña, G R. Torres, S. S. Hechanova, C. M. Vera Cruz, D. S. Brar

Poster Number	Title	Authors
P3-12	Introgression of multiple bacterial blight resistance genes in super Basmati rice using marker assisted backcross (MAB) breeding approach	Muhammad Arif, Muhammad Sabar Shahzad Amir, Kashif Aslam, Shahio Mansoor, Yusuf Zafar
P3-13	Investigation of brown plant hopper resistance in <i>Oryza nivara</i> and <i>Oryza eichingeri</i> derived lines in Sri Lanka by honeydew test and molecular marker analysis	S.A.P. Madurangi, W.L.G. Samarasinghe, P.V. Hemachandra, S.G.J.N. Senanayake
P3-14	Involvement of ethylene biosynthesis and signaling in host resistance to rice blast disease	Emily E. Helliwell, Jianping Chen , Xiangjun Zhou, Yinong Yang
P3-15	Map-based cloning and molecular breeding of <i>pi21</i> , a non-race specific resistant gene to blast	S. Fukuoka, N. Saka, H. Koga, K. Ono, T. Shimizu, K. Ebana, N. Hayashi, A. Takahashi, H. Hirochika, K. Okuno, M. Yano
P3-16	Mapping genes for bacterial blight resistance transferred from wild species, <i>Oryza rufipogon</i> Griff. into rice (<i>O. sativa</i> L.)	A. Min, M. S. Mendioro, J. Hernandez, K. H. Kang, D.S. Brar
P3-17	Marker aided improvement of parental lines of PusaRH 10, a super fine grain aromatic rice hybrid, for resistance to bacterial leaf blight	A.K. Singh, S.H. Basavraj, V.K. Singh, Devinder Singh, Deepti Anand, Sheel Yadav, Anita Singh, Ashutosh Singh, M. Nagarajan, T. Mohapatra, K. V. Prabhu
P3-18	Marker-assisted development of near-isogenic lines and pyramided lines carrying resistance genes to green rice leafhopper (<i>Nephotettix</i> <i>cincticeps</i> Uhler) with Taichung65 genetic background in rice (<i>Oryza sativa</i> L.)	Hideshi Yasui, Daisuke Fujita, Atsushi Yoshimura
P3-19	Molecular basis of gall midge-rice interactions: role of pathogenesis related genes	Nidhi Rawat, Deepak Sinha, Rajendrakumar P, Priyanka Shrivastava, C. N. Neeraja, R.M. Sundaram, Suresh Nair, J.S. Bentur
P3-20	Molecular characterization of introgression and identification of putative genes for bacterial blight resistance in wide-cross derivatives of rice (<i>Oryza sativa</i> L.)	S.S. Hechanova, M.Q. Diaz, J.E. Hernandez, M.S. Mendioro, J. M. Ramos, D.S. Brar
P3-21	Molecular characterization of tungro and blast resistant genotypes using minisatellite and simple sequence repeat (SSR) markers	M. A. Latif, M. M. Rahman, M. M. Rahman, M. A. T. Mia
P3-22	NBS-LRR gene clusters contributing to durable resistance to Magnaporthe oryzae in rice variety SHZ-2	Y Liu, X.Y. Zhu, S. Zhang, J. Leach, B. Liu, H. Leung
P3-23	New designation system for pathogenicity race of rice blast fungus by using LTH monogenic lines in rice	Nagao Hayashi, Yoshimichi Fukuta
P3-24	Phloem sap ingestion by brown planthopper is reduced on resistant rice varieties	Mohamad Bahagia AB Ghaffar, Jeremy Pritchard, John Newbury, Brian Ford Lloyd

Poster Number	Title	Authors
P3-25	QTL mapping of tolerant reactions to rice tungro disease in a putative IR64 rice mutant	N. Zenna, K. Satoh, S. Kikuchi, P.Q Cabauatan, M. Baraoidan, H. Leung, I-R Choi
P3-26	Reaction of gene pyramid lines of Samba Mahsuri and Triguna possessing <i>Xa21, xa13</i> and <i>xa5</i> against bacterial blight disease	G.S. Laha, M.R.V. Priya, P. S. Rao, C.S. Reddy, B.C. Virakatamath, P. Natarajkumar, S. M. Balachandran, R.M. Sundaram and R.V. Sonti
P3-27	Response of rice to varying levels of calcium silicate application against sheath blight (<i>Rhizoctonia Solani Khun</i>)	Guia Saludares, Revelieta B. Alovera
P3-28	Rice defense to plant parasitic nematodes	Godelieve Gheysen, Kamrun Nahar, Tina Kyndt
P3-29	Rice improvement in Niger with focus on resistance to Rice Yellow Mottle Virus	Sow Mounirou, Sere Yacouba, Onasanya Amos, Amir Y. Sido, Kam Honore, Mark Laing, Ndjiondjop Marie Noelle
P3-30	Study of Burkina Faso rice landraces diversity and breeding for resistance to Rice Yellow Mottle Virus (RYMV)	Honoré Kam, Dona Dakouo, Yacouba Sere, Mark D. Laing, Marie-Noelle Ndjiondjop, Nourollah Ahmadi
P3-31	Towards fine mapping of bacterial blight resistance gene xa8 in rice	Yogesh Vikal, Rajiv Sharma, Harleen Chawla, Kuldeep Singh
P3-32	Towards the genetic mapping of stem rot resistance using a backcross inbred population in rice	Virgilio Andaya, Jeff Oster, George Yeltatzie
P3-33	Unravelling the molecular genetic basis of resistance in rice to the parasitic weed <i>Striga hermonthica</i>	Arnaud Boisnard, Mamadou Cissoko, Marie-Noëlle Ndjiondjop, Jonne Rodenburg, Jon Slate, Malcolm Press, Julie Scholes
P3-34	Application of Pi-gene specific markers to IRBLs and some varieties	J.H. Chin, M.R. Burgos, Y. Koide, V.D. Aldemita, N. Kobayashi, C. Vera Cruz
P3-35	Broad-spectrum resistance of blast monogenic lines to <i>Magnaporthe oryzae</i>	I. Oña, J.H. Roh, S.S. Han, Y.C. Cho, A. Tagle, J. Yanoria, N. Kobayashi, Y. Fukuta, Y. Koide, R. Burgos, J.H. Chin, C.M. Vera Cruz
P3-36	Dissection and utilization of defense response QTLs for quantitative resistance to rice blast	M.G. Carrillo, P.H. Goodwin, M. Variar, S.S. Han, J.H. Roh, Y.C. Cho, J.E. Leach, H. Leung, C.M. Vera Cruz
P3-37	Evaluation of response of selected upland rice varieties to simultaneous inoculation with <i>Pythium arrhenomanes</i> and <i>Meloidogyne</i> <i>graminicola</i>	C.G.B. Banaay, L. Fernandez, M.S. Pinili, K. Das, D. De Waele, A. Kumar, Z. Dule, C.M. Vera Cruz

Poster Number	Title	Authors
P3-38	Genetic variability of <i>Bipolaris oryzae</i> and molecular mapping for resistance to brown spot in rice	M.R. Burgos, S. Banu, M. Dela Paz, G. Beligan, M. Katimbang, P.H. Goodwin, I. Ona, M.Y. Reveche, E. Ardales, V.D. Shukla, J. Acedo, H. Leung, D.S. Brar, C.M. Vera Cruz
P3-39	Organ-specific infection strategies of the rice blast fungus <i>Magnaporthe oryzae</i>	Sylvain Marcel, Ruairidh Sawers, Edward Oakeley, Herbert Angliker, Uta Paszkowski
P3-40	Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (<i>Oryza sativa</i>) associated with resistance to rice tungro spherical virus	J.H. Lee, M. Muhsin, G.A. Atienza, D.Y. Kwak, S.M. Kim, T.B. De Leon, E.R. Angeles, E. Coloquio, H. Kondoh, K. Satoh, R.C. Cabunagan, P.Q. Cabauatan, S. Kikuchi, H. Leung, I.R. Choi
P3-41	Identification of blast resistance genes in Chinese rice mini-core collections using functional markers	Cailin Lei
P3-42	Quantitative trait loci conferring resistance to green rice leafhopper, <i>Nephotettix cincticeps</i> Uhler, in African rice (<i>Oryza glaberrima</i> Steud.).	Chika Ogata, Atsushi Yoshimura, Hideshi Yasui
P3-43	Development of near isogenic lines for <i>bph25(t)</i> and <i>Bph26(t)</i> , conferring resistance to brown planthopper, <i>Nilaparvata lugens</i> (Stål.) in the indica rice cultivar ADR52	Cong Nguyen Phi, Asanori Yara, Masaya Matsumura, Atsushi Yoshimura, Hideshi Yasui
P3-44	Forward and reverse genetic approaches in rice to unravel control of partial resistance to pathogens	Xavier Grand, Didier Tharreau, Jean- Loup Notteghem, Stephan Brunner, Jean-Benoit Morel
P3-45	Identification of new resistance source and mapping of resistance gene to African strain of <i>Xanthomonas oryzae</i> pv. <i>Oryzae</i> (Xoo) causing bacterial leaf blight in rice.	Gustave Djedatin, Marie Noelle Ndjiondjop, Mathias Lorieux, Alain Ghesquiere, Ambaliou Sanni, Valérie Verdier
P3-46	<i>RKx</i> , a member of <i>Xa3/Xa26</i> disease resistance gene family, causes lesion mimics when overexpressed in rice	Haitao Zhang, Yinglong Cao, Jing Zhao, Shiping Wang
P3-47	Control of bakanae diseases by hot water treatment in rice	Jaehwan Roh, Geunsoo Kim, Dongbum Shin, Youngchan Cho, Yeongyu Kim, Uigum Kang
P3-48	QTL analysis related to broad-spectrum resistance to blast in Korean japonica weedy rice	Jeong-Ju Kim, Jae-Hwan Roh, Jung-Pil Suh, Myung-Kyu Oh, Myeong-Ki Kim, Yong-Hwan Choi, Jong-Min Jeong, Jeom-Ho Lee, Yeon-Gyu Kim, Young-Chan Cho
P3-49	Morphological and molecular characterization of Chinese upland rice and their response to <i>Magnaporthe oryzae</i>	Yong-feng Shi, Jie Chen, Qi-na Huang, Cai-lin Lei, Yoshimura Fukuta, Jian-li Wu

Poster Number	Title	Authors
P3-50	Rice tungro bacilliform virus (RTBV)-resistant system in TW16 related with DNA replication machineries	Kouji Satoh, Hiroaki Kondoh, Genelou Atienza, Johnny Balidion, Rogelio Cabunagan, Pepito Cabauatan, II-Ryong Choi, Shoshi Kikuchi
P3-51	Study on comparison of two set of differential varieties to <i>Magnaporthe grisea</i> In Yunnan Province, China	Li chengyun, Li jinbin, Zhang qing, Lei Caillin, Zhu Youyong
P3-52	Sound stimulates gene expression and pathogen control	MI-Jeong Jeong, Seong-Kon Lee, Beom-Gi Kim, Myeong-Ok Byun, Soo-Chul Park
P3-53	Genetic diversity of rice blast pathogen, Pyricularia grisea in Karnataka State, India	Prashanthi SK, Srikant Kulkarni, Yashoda Hegde, N.G. Hanamaratti, Meena BS
P3-54	ATS, an efflux target of multi-drug transporter Abc3 in <i>Magnaporthe</i> , elicits hypersensitive response in rice	Rajesh Patkar, Naweed Naqvi
P3-55	Genetic diversity of rice blast isolates from Indonesia based on the reactions to monogenic lines	Santoso Santoso, Anggiani Nasution, Suwarno Suwarno, Akiko Kawasaki, Takahito Noda, Sachiko Senoo Namai, Nagao Hayashi, Yoshimichi Fukuta
P3-56	Marker assisted introgression of bacterial blight and rice blast resistance genes into hybrid rice parental lines	Srinivasa Rao Kommoju, Hari Yadla G. S. Laha, B. C. Virakthamath, B. Mishra, A. S. Hariprasad, P. Natarajkumar, K. Madhan Mohan, M. S. Prasad, R. M. Sundaram
P3-57	Identification and molecular mapping of a novel bacterial leaf blight resistance gene from <i>O. brachyantha</i>	Sujatha Kalidindi, Natarajkumar Podishetty, G. S. Laha, Srinivasarac Kommoju, B. C. Virakthamath, B. Mishra, D. S. Brar, C. S. Reddy, Har Yadla, R. M. Sundaram
P3-58	A new gene for bacterial blight resistance introgressed from <i>Oryza brachyantha</i>	T. Ram, G.S. Laha, S.K. Gautam, Ram Deen, R.M. Sunderam, M.S. Madhav, D.S. Brar, B.C. Viraktamath
P3-59	Allele mining for important blast resistance genes from land races of rice	T.R. Sharma, Shallu Thakur, Yogesh Gupta, Pankaj Kumar Singh, H.C. Upreti, N.K. Singh, A.K. Singh, U.D. Singh, R.Rathour, A.S. Kappor, R.P. Kaushik, M. Variar, D. Maiti, N.P. Mandal, S.K. Prashanthi, N.G. Hanamaratti
P3-60	SFP genotyping identified two rice terpene synthases induced by infestation of brown planthopper (BPH) In KDML105 isogenic lines resistant to BPH	Wintai Kamolsukyunyong, Jirapong Jairin, Theerayut Toojinda, Apichart Vanavichit

Poster Number	Title	Authors
P3-61	QTL analysis for durable resistance to blast in African upland rice Moroberekan and development of QTL-NIL	Yeon-Gyu Kim, Hun-June Park, Young-Chan Cho, Jung-Pil Suh, Jae-Hwan Roh, Myung-Kyu Oh, Yong-Hwan Choi, Jeong-Ju Kim, Myeong-Ki Kim, Casiana M. Vera Cruz
P3-62	Fine mapping of rice tungro disease	Gabriel Romero, Reynante Ordonio, Trinidad Fernando, Jo Messing
P3-63	Progress of breeding for rice blast resistance in the Philippines	Haizel Pastor, Joanne Domingo, Marites Camus, Roberto Baybado, Loida Perez
	Session 4: Abiotic stres	Ses
P4-1	Enhanced tolerance for abiotic stresses in rice through biotechnology	Maria Elena A. Estrada, Dong-Jin Kang, Maricris Zaidem, Evelyn Liwanag, Ruby Sallan-Gonzales, James Egdane, Abdelbagi Ismail, Inez Slamet-Loedin, Rachid Serraj
P4-2	Comparative analysis of the rice group 3 late embryogenesis abundant genes expression during development stages and stresses	Yi-Ting Ke, Ching-Hui Yeh
P4-3	Expression and functional analysis of cation channels containing the cyclic nucleotide binding domain in rice	Beom-Gi Kim, Hyunsik Hwang, Hyunmi Kim, Mina Jeong
P4-4	Novel transcription factors regulating abiotic stress in rice (<i>Oryza sativa</i> L.)	Nelson Saibo, Tiago Lourenço, Duarte Figueiredo, Tânia Serra, Subhash Chander, Pedro Barros, M Margarida Oliveira
P4-5	Two homologous <i>OsPUB5</i> and <i>OsPUB6</i> , which encode U-box E3 ubiquitin ligases, are highly inducible in response to abscisic acid and abiotic stresses in rice (<i>Oryza sativa</i> L.)	Hansol Bae, Woo Taek Kim
P4-6	An approach of combining QTL meta-analysis and transcriptome profiling for the abiotic stress tolerance in rice	Nilesh K. Deshmukh, Rupesh K. Deshmukh, Humira Sonah, Raju N. Gacche
P4-7	Enhanced tolerance for abiotic stresses in rice through biotechnology	M. Estrada, D.J. Kang, M. Zaidem, E. Liwanag, R. Sallan-Gonzales, J. Egdane, A. Ismail, I.H. Slamet- Loedin, R. Serraj
P4-8	Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth	Seung-Woon Bang, Nari Yi, Youn Shic Kim, Jin Seo Jeong, Su-Hyun Park, Ju-Kon Kim
P4-9	Genetic diversity of candidate genes for root development in rice	Caroline Plassé, Simon Gensous, Pascal Gantet, Brigitte Courtois
P4-10	Large-effect QTLs for grain yield under drought: what is within them?	S. Dixit, J. Bernier, R. Venuprasad, M. Amante, B.P. Mallikarjuna Swamy, L. Quiatchon, D.K. Atri, A. Kumar

Poster Number	Title	Authors
P4-11	MicroRNA discovery in drought tolerant indica rice cultivar, Nagina (N22)	Payal Kumari, Trupti Sharma, M. Roseeta Devi, Shivani Gupta, Preet Agarwal, Dharmendra K. Pandey, Mukesh Kumar, Arun K. Sharma, Saurabh Raghuvanshi
P4-12	Molecular mapping of QTLs for drought related traits under two water supply conditions and hydroponics in rice (<i>Oryza sativa</i> L.)	LR. Vemireddy, A.Srividya, G.Anuradha, E.A.Siddiq
P4-13	Morpho-physiological and biochemical changes in rice varieties as affected by early stage drought	Padmini Swain, Mirza Jaynul Baig, Ashutosh Kumar Mall, Onkar Nath Singh, Arvind Kumar, Rachid Serraj
P4-14	Rice drought tolerance QTLs: meta-analysis improves resolution to a few candidate genes	Brigitte Courtois, Nourollah Ahmadi Farkhanda Khowaja, Adam Price, Jean-François Rami, Julien Frouin, Chantal Hamelin, Manuel Ruiz
P4-15	Drought tolerance conferred by <i>DTY</i> 12.1 allele is linked to increased total root length resulting in higher relative water content and spikelet fertility.	R.H. Oane, S. Dixit, J. Bernier, A. Kohli, A. Kumar
P4-16	Effect of combined drought and heat stress on anthesis in rice	Z. Rang, L. Lawas, S.V.K. Jagadish P.Q. Craufurd, S. Heuer
P4-17	Genetic variation of shoot and root dynamics under different soil moisture levels	R. Mabesa, A. Henry, R. Serraj
P4-18	Genome-wide response to selection and genetic basis of cryptic genetic variation of drought tolerance in rice (<i>Oryza sativa</i> L.)	Yongming Gao, Binying Fu, HR Lafitte, Tianqing Zheng, Jianlong Xu, ZK Li
P4-19	Molecular Introgression of drought resistance QTL into KDML105 through marker-assisted backcrossing method	J.L. Siangliw, T. Toojinda, G. Pantuwan, B. Jongdee, S. Jearakongman, A. Vanavichit, S. Tragoonrung, K. Punyawaew
P4-20	Over-expression of rice Oshox4 gene affects plant size and tiller number and enhances plant water status and growth under drought stress	W. Zhou, E. Abrigo, C.C. Dueñas, N. Oliva, P.B. Malabanan, R. Sallan-Gonzales, R. Serraj, P.B.F. Ouwerkerk, I.H. Slamet-Loedin
P4-21	Studies on water uptake and drought- avoidance root traits in advanced drought- adapted breeding lines in India	R.P. Veeresh Gowda, V. Vadez, T. Ram, H.E. Shashidhar, V. Rai, A. Kumar, R. Serraj
P4-22	Analysis and molecular mapping of aerobic adaptation in rice (<i>Oryza sativa</i> L.)	Hongsheng Li, Peng Xu, Jing Li, Jiawu Zhou, Fengyi Hu, Wei Deng, Dayun Tao
P4-23	A genomic region conserved for drought resistance in rice (<i>Oryza sativa</i> L.) lines	Chandra Babu Ranganathan, Kanagaraj P, Silvas Jebakumar Prince, Senthil A.
P4-24	Characterization of dark green leaf mutants of rice Cv Nagina 22 for drought tolerance and delayed senescence	Madhusmita Panigrahy, Sarla Neelamraju, Rajeswari Ramanan

Poster Number	Title	Authors
P4-25	HSF gene family in rice: Genomic organization, expression profiling and binding specificities	Dheeraj Mittal, Amanjot Singh, Anil Grover
P4-26	Association of effective QTLs with cold tolerance at the reproductive stage of rice	Jung-Pil Suh, Jung-Il Lee, Yong- Hwan Choi, Jong-Doo Yea, Kshirod K. Jena
P4-27	Characterization of rice boron transporters and the use of transporters for generation of low boron tolerant rice	Shimpei Uraguchi, Hideki Hanaoka, Kayoko Aizawa, Yuichi Kato, Yuko Nakagawa, Toru Fujiwara
P4-28	Comparative transcriptional profiling of two contrasting IR64 mutants and wild type parent under control and salt stress treatments during vegetative stage	Babak Nakhoda, Harkamal Walia, Xinping Cui, Tim Close, Merlyn S. Mendioro, Hei Leung, Abdelbagi M. Ismail
P4-29	Exploiting rice genetic diversity by EcoTILLING: finding SNPs in salt tolerance genes	Sonia Negrao, Cecilia Almadanim, Joao Santos, Kenneth McNally
P4-30	Identification and characterization of salt- tolerant rice from a pool of activation tagging lines	Sang-Choon Lee, Seong-Ryong Kim
P4-31	QTL identification for reproductive stage salinity tolerance in rice	Hosneara Hossain, M.A. Rahman, M.S. Alam4, M. De Ocampo, A.G. Sajise1, A.N. Vispo, L. Refuerzo, M. Arceta, M.J. Thomson, A.M. Ismail, G.B. Gregorio, R.K. Singh
P4-32	Development of near-isogenic lines for multiple QTLs associated with salinity tolerance in rice	J.A. Egdane, M.P. de Ocampo, R.E. Zantua, J.T. Concepcion, R.K. Singh, M.J. Thomson, A.M. Ismail
P4-33	Na+ but not CI- or osmotic stress is involved in NaCI-induced hydrogen peroxide accumulation and glutathione reductase expression in roots of rice seedlings	Chwan-Yang Hong, Sin-Yuan Cheng, Yun-Yang Chao, Min-Yu Yang, Ching Huei Kao
P4-34	Reproductive stage salinity tolerance QTL in rice	Cecilia Diana O. Calapit-Palao, Celia B. de la Viña, Evelyn Mae T. Mendoza, Glenn B. Gregorio, Rakesh Kumar Singh
P4-35 P4-36	Physiological impact of salt stress on gas exchange parameters, antioxidants and Na+, K+ uptake levels at early seedling stage Screening of salt tolerant rice lines using carbon isotope discrimination technique	S. Ponnuvel, C. Vijayalakshmi, K. Thiyagarajan, J. R. Kannan Bapu, C. Appavu, B. C. Viraktamath Mirza Mofazzal Islam, Abdelbagi M. Ismail, Shamsun Nahar Begum,
P4-37	Salt-inducible promoters in rice	Reza Mohammad Emon, Jyotirmoy Halder, Amal Chandra Manidas Sharmin Jahan, Saima Shahid, U.S. Mahzabin Amin, Richard Malo, Farhana Naznin, Lisa Parvin, Zeba I. Seraj

Poster Number	Title	Authors
P4-38	Genetic dissection of seedling-stage salt tolerance in rice using an indica-japonica population	M.P. de Ocampo, M.J. Thomson, J.A. Egdane, M.A. Rahman, R.E. Zantua, J.C.T. Concepcion, A.M. Ismail
P4-39	Rice aluminum tolerance: investigations into the genetic and physiological mechanisms of rice Al tolerance and development of a novel rice Al tolerance phenotyping platform	Adam Famoso, Randy Clark, Jon Shaff, Leon Kochian, Susan McCouch
P4-40	QTL mapping of phosphorus deficiency tolerance in rice (<i>Oryza sativa</i> L.) at two development stages	Liyong Cao , Ruci Wang, Xihong Shen, Xiaodeng Zhan, Weiming Wu, Shihua Cheng
P4-41	Development and application of gene-based markers for the major QTL Phosphorus uptake 1 (<i>Pup1</i>)	J.H. Chin, C. Dalid, R. Gamuyao, S. Amarante, J. Siopongco, J. Trinidad M. Wissuwa, S. Haefele, S. Heuer
P4-42	Introgression of the <i>Pup1</i> major QTL into modern Indonesian upland rice varieties using marker-assisted backcrossing	M. Bustamam, J. Prasetiyono, I.H. Somantri, T. Suhartini, S. Abdulrahman, S. Moeljopawiro, J.H. Chin, M. Wissuwa, A.M. Ismail, S. Heuer
P4-43	Towards the functional validation of genes at the major rice QTL Phosphorus Uptake 1 (<i>Pup1</i>)	R. Gamuyao, J. Trinidad, J.H. Chin, M. Wissuwa, S. Heuer
P4-44	Screening of salinity tolerant elite lines under extremely Zinc deficient soil	A.C. Sajise, M. Reza, A.N. Vispo, A. Mamiit, M.F. Cueto, E.L. Mercado, M. Arceta, R.K. Singh, G.B. Gregoric
P4-45	Micronutrient enrichment of rice grain through dihaploid breeding	D. Grewal, P. Virk, G. Barry, M. Samia, M. Inabangan, T. Bharaj, V. Lopena
P4-46	Enhanced tolerance of Ac/Ds insertion mutant rice lines under hydrogen peroxide and ultraviolet radiation stress	Norvie L. Manigbas, Dong-Soo Park, Sung-Tae Park, Soo-Kwon Park, Woon-Ha Hwang, Sang-min Kim, Hoejeong Wang, Min-Hee Nam, Moo-Young Eun, Young-Min Woo, Doh-Hoon Kim, Chang-Deok Han, Hang-Won Kang, Sang-Yeol Lee Gihwan Yi
P4-47	Rising ozone levels pose a new threat to yield stability in rice: Tolerance mechanisms and underlying genetic factors	Michael Frei, Charles Chen, Juan Pariasca Tanaka, Yoshihisa Kohno, Matthias Wissuwa
P4-48	Marker-assisted breeding for submergence tolerance in Philippines' cultivar PSB Rc82	Joanne Domingo, Haizel Pastor, Henry Ticman, Josielyn Bagarra, Marites Camus, Roberto Baybado Jr, Nenita Desamero, Darlene Sanchez, Alvaro Pamplona, David Mackill, Loida Perez

Poster Number	Title	Authors
P4-49	Phenotypic expression of introgressed <i>SUB1</i> QTL varies with genetic background	Nenita V. Desamero, Josielyn C. Bagarra, Norvie L. Manigbas, Amelita T. Angeles, Myrna D. Malabayabas, Gerald B. Ravelo, Romeo V. Labios, Alvaro M. Pamplona, Abdelbagi, Ismail, David J. Mackill
P4-50	Performance of Sub1 lines and their parental types under complete submergence and stagnant flooded conditions	Y. Nugraha, G.V. Vergara, D.J. Mackill, A.M. Ismail
P4-51	Mapping of submergence tolerance QTLs in rice using a population derived from IR72/ Madabaru	D.L. Sanchez, P.D. Sendon, A.M. Pamplona, E.M. Septiningsih, D.J. Mackill
P4-52	Performance of submergence-tolerant rice (Sub1 lines) in flood-prone areas of Southeast Asia	G.V. Vergara, R.V. Labios, D.O. Manzanilla, A.M. Pamplona, M.Q. Esguerra, T.R. Paris, A.M. Ismail, D.J. Mackill
P4-53	Alcohol dehydrogenase (ADH) gene expression in transgenic rice under anaerobic conditions	Reneeliza Melgar, Sailila Abdula, Jur Yeong Kim, Hye-Jung Lee, Sun-Hee Woo, Kwon-Kyu Kang, Dong-Sub Kim, Yong-Gu Cho
P4-54	Identification of quantitative trait loci (QTL) in rice (<i>Oryza sativa</i> L.) for tolerance to submergence during germination derived from a tolerant variety, Ma-Zhan Red	P.D. Sendon, D.L. Sanchez, A.M. Ismail, D.J. Mackill, E.M. Septiningsih
P4-55	Moving beyond <i>SUB1</i> : combining tolerance to submergence and water stagnation	A.M. Pamplona, D.L. Sanchez, E.M. Septiningsih, D.J. Mackill
P4-56	Regulation of tissue-specific expression of the submergence-tolerance gene <i>SUB1A</i> .	N. Singh, D.T.M. Trang, D.J. Mackill, S. Heuer
P4-57	Survival and grain yield of two Sub1 introgression lines as affected by variable durations of submergence	W. Wang, G.V. Vergara, Z. Li, D.J. Mackill , A.M. Ismail
P4-58	Toward identification of the gene(s) underlying a QTL for tolerance to flooding during germination derived from the rice variety Khao Hlan On	E.M. Septiningsih, D.L. Sanchez, P.D. Sendon, K.R. Trijatmiko, L.B. Torrizo, J.L. Balindong, G.V. Vergara I.H. Slamet-Loedin, A.M. Ismail, D.J. Mackill
P4-59	Effect of seed age and seed storage temperature on tolerance for flooding during germination in rice (<i>Oryza sativa</i> L.)	E.S. Ella, M.L. Dionisio-Sese, A.M. Ismail
P4-60	The submergence tolerance gene, <i>Sub1A-1</i> , regulates amelioration of reactive oxygen species in rice.	Takeshi Fukao, Julia Bailey-Serres
P4-61	Identification and mapping of QTLs for agronomic traits in crosses of rice (<i>Oryza</i> <i>sativa</i> x <i>O. glaberrima</i>) under upland drought stress	Isaac Kofi Bimpong, Evelyn M.T. Mendoza, Rachid Serraj, Joong Hyoun Chin, Jose Hernandez, Merlyn S. Mendioro, Joie Ramos, Darshan S. Brar

Poster Number	Title	Authors
P4-62	Molecular diversity and expression studies of <i>Sub1</i> gene haplotypes of rice, differing in tolerance to submergence	ASM Masuduzzaman, AKM Shamsuddin, MA Salam, Endang Septiningsih, Darlene Sanchez, Alvaro Pamplona, Sigrid Heuer, David Mackill
P4-63	Targeted association analysis for tolerance to salinity within the European core collection of temperate japonica rice	Nour Ahmadi, Brigitte Courtois, Senia Negrão, Julien Frouin, P. Babo, R. Greco, G. Bruschi, S. Vancoppenolle, Dimitrios Katsantonis, Margarida Oliveira, Pietro Piffanelli
P4-64	Genetic analysis of salt tolerance in Iranian selected rice genotypes	Ali Moumeni, Hasan Shokri
P4-65	Evaluation of genotypic and phenotypic diversity among Iranian rice genotypes at reproductive stage under saline condition	Ghasem Mohammadi-Nejad, Marjan Qasemkhani, Hossein Sabouri, Enayatollah Tohidinejad, Mohammad Hossein Fotokian, Babak Nakhoda
P4-66	Assessment of genetic variability of rice genotypes under aerobic conditions	Gurjit Mangat, Onkar Jhutty, Naveen Singh, Rupinder Kaur, Gurpreet Sahi, Kuldeep Singh, Parminder Virk, Tajinder Bharaj
P4-67	Identification of drought-sensitive mutant for a putative beta-carotene hydroxylase gene involved in ABA synthesis	Hao Du, Fei Cui
P4-68	Physiological and genetic studies of natural variations in tolerance of photoinhibition in rice	Ichiro Kasajima, Kentaro Takahara, Toshio Yamamoto, Masahiro Yano, Maki Kawai-Yamada, Hirofumi Uchimiya
P4-69	Identification of a drought hypersensitivity T-DNA mutant in rice	Jing Ning, Hao Du, Wei Zong, Lizhong Xiong
P4-70	Genome-wide gene expression profile of rice seedling under cold stress and candidate gene discovery by integrating expression data with QTL mapping	Junliang Zhao, Shaohong Zhang, Bin Liu, Tifeng Yang, Zhanghui Huang, Xiaofei Wang, Hei Leung
P4-71	Developing iron toxicity tolerant rice varieties adapted to the lowlands of sub Saharan Africa	Khady Nani Drame, Kazuki Saito, Brahima Kone, Marie Noelle Ndjiondjop, Ayoni Ogunbayo, Benjamin Toulou, Brice Ndri, Oyin Oladimedji, Dona Dakouo, Moussa Sie
P4-72	<i>OsLEA1a</i> , a new Em-like protein of cereal plants	Ming-Der Shih, Lin-Tzu Huang, Fu- Jin Wei, Ming-Tsung Wu, Folkert A. Hoekstra, Yue-Ie C. Hsing

Poster Number	Title	Authors
P4-73	Towards the development of a drought tolerant rice variety for eastern India	Onkar Nath Singh, Ashutosh Kumar Mall, L K Bose, P Swain, N P Mandal, S Verulkar, B N Singh, T Ram, J L Dwevedi, P Peraju, A M Mehta, R C Babu, S.P Das, G.J.N. Rao, A. Kumar
P4-74	Contribution of Na+ excretion via hydathode on salinity tolerance in rice	Satohiro Kuriyama, Tadashi Sato
P4-75	Identification of stable QTLs for cold tolerance at seedling stage in two different environments	Shaohong Zhang, Jingsheng Zheng, Bin Liu, Shaobing Peng, Hei Leung, Junliang Zhao, Xiaofei Wang, Tifeng Yang, Zhanghui Huang
P4-76	Potential rice germplasm for development of drought tolerant varieties	Site Noorzuraini Abd Rahman, Izyani Raship, Mohd Yusoff Abdullah
P4-77	Effect of ozone on the growth response of at NDPK-induced transgenic rice lines	Soo-Kwon Park
P4-78	Transactivator-facilitated enhancer trap system for rice resistance to drought: Phenotype and molecular analysis of rice TAFET lines	Sri Koerniati, Sugiono Moeljopawiro, Pieter Ouwerkerk
P4-79	SSSL-based identification of QTL for cold tolerance at different stages in rice and molecular breeding for cold tolerance at all stages	Tifeng Yang, Xiaofei Wang, Guiquan Zhang, Shaohong Zhang, Zhanghui Huang, Junliang Zhao, Hei Leung, Bin Liu
P4-80	Development of cold-tolerant parental lines and QTLs of some agronomical traits in different environments	J.H. Cho, W.G. Ha, Y.C Song, H. K. Upreti, J.Y. Lee, Smbu Katiwata
P4-81	Genome-wide identification of BURP domain- containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses	Xipeng Ding, Xin Hou
P4-82	Alteration in DNA methylation pattern occourred in different genotypes of rice under low-temperature stress	Xiuyun Lin, Hongyan Wang
P4-83	Obtaining the ethylene response factors, SNORKEL1 and SNORKEL2, lead rice to adapt to deep water	Yoko Hattori, Keisuke Nagai, Shizuka Furukawa, Xian-Jun Song, Hidemi Kitano, Hitoshi Mori, Motoyuki Ashikari
P4-84	Comprehensive analysis of DREB1/CBF family genes involved in abiotic-stress responsive gene expression in rice	Yusuke Ito, Kyonoshin Maruyama, Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki
P4-85	Digital expression profile of miRNA and mRNA in developing rice seeds	Fu Jin Wei
P4-86	Dissection of Genetic Overlap of Salt Tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice	Elec, Venus, Rey, Jessica, Zang JinPing, Sun Yong, Xu JianLong & Li ZhiKang

Poster Number	Title	Authors
P4-87	Interaction of genotype-by-environment on avoidance traits of diverse rice genotypes under water stressed conditions	Efisue Andrew, P. Tongoona, John Derera
P4-88	QTL mapping and profiling of genes associated to seedling vigor under submergence stress of developing rice seedlings	Oliver E. Manangkil, Hien T. Vu, L. Ranawake, N. Mori, S. Yoshida, M. Yano, C. Nakamura
	Session 5: Yield, heterosis and ag	ronomic traits
P5-1	Developing rice that maintains high yield in a warmer global climate	S.V. Krishna Jagadish, Zhongwen Rang, Lovely Mae Lawas, Peter Q Craufurd, Gregory Howell, Edilberto Redoña, Sigrid Heuer
P5-2	Dissection of QTLs on the short arm of rice chromosome 6 using residual heterozygous lines	Jie-Yun Zhuang, Ye-Yang Fan, Ji- Rong Wu, Wei-Dong Yu, Bo Shen
P5-3	Diversification in flowering time caused by tightly linked QTLs between and within rice species	Naohiro Uwatoko, Yuji Ikeda, Yoshio Sano
P5-4	Broadening Japonica rice germplasm for enhancing yield potential in the tropical conditions by dihaploid breeding	Kyung-Ho Kang, Jong-Cheol Ko, Sun-Hee Choi, Jose Kenneth Yap, Youn-Lee Oh, Kwan-Ho Jeong, Jong-Hwa Park, Sol Moe Lee
P5-5	The C/T mutation in the promoter region of <i>Ghd7</i> contributes to rice plant height	Wenhao Yan
P5-6	A comparative studies on two - line, three - line and conventional hybrids of rice (<i>Oryza</i> <i>sativa I.</i>)	Tran Thi Thuy Van, Manonmani Swaminathan, Raveendran Subramaniam, Robin Sabariappan
P5-7	Application of molecular markers for hybrid rice improvement in India	Basavaraj C Viraktamath, Mugalodi S Ramesha, A S Hariprasad, C.N. Neeraja, R.M. Sundaram
P5-8	Artificial selection for <i>SEMIDWARF1</i> during japonica rice domestication	Kenji Asano, Masanori Yamasaki, Kotaro Miura, Jianzhong Wu, Kaworu Ebana, Takashi Matsumoto, Hidemi Kitano, Motoyuki Ashikari, Makoto Matsuoka
P5-9	Blast research network for stable rice production	Yoshimichi Fukuta, Nobuya Kobayashi, Takahito Noda, Nagao Hayashi, Casiana M. Vera Cruz
P5-10	Characterization and variations in panicle branching pattern found in rice multi-grain cultivars.	Mayuko Ikeda, Yoshitsugu Hirose, Kotaro Miura, Hidemi Kitano
P5-11	Cytoplasm plays an important role for genetic improvement in Japonica rice	Fengyi Hu, Peng Xu, Jiawu Zhou, Xianneng Deng, Jing Li, Jianyi Yang, Guifen Yang, Youqiong Yang, Dayun Tao

Poster Number	Title	Authors
P5-12	Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication	Yong Zhou, Jinyan Zhu, Zhengyi Li, Chuandeng Yi, Jun Liu, Honggen Zhang, Shuzhu Tang, Minghong Gu, Guohua Liang
P5-13	Dissection and validation of two QTLs for flag leaf length on the short arm of rice chromosome 6	Bo Shen, Jie-yun Zhuang
P5-14	Evaluating stably expressed QTL by allelic frequency shifting in the extreme lines for grain weight and shape traits in rice (<i>Oryza sativa</i> L.)	Tianqing Zheng, Yun Wang, Linghua Zhu, Huqu Zhai Jianlong Xu, Zhikang Li
P5-15	Fine mapping of fertility restoration loci ' <i>Rf3</i> ' and ' <i>Rf4</i> ' for WA-CMS of rice	Neeraja C. N., Balaji Suresh Pippalla, Dharika N., M.S.Ramesha, L.R. Vemireddy, R.M.Sundaram, B.C.Viraktamath
P5-16	Fine mapping of qNFGP6 on the short arm of rice chromosome 6	Ye-Yang Fan, Jing-Hong Du, Jie-Yun Zhuang
P5-17	Genetic and breeding studies on introgression lines with unique agronomic traits in the genetic background of rice variety IR64: detection of four QTLs related to heading	D. Fujita, R. Santos, L. Ebron, M.J. Telebanco-Yanoria, Y. Fukuta, N. Kobayashi
P5-18	Genetic and breeding studies on introgression lines with unique agronomic traits in the genetic background of rice variety IR64: detection and validation of QTLs related to high spikelet number	D. Fujita, A.G. Tagle, L.A. Ebron, M.J. Telebanco-Yanoria, Y. Fukuta, N. Kobayashi
P5-19	Genetic and breeding studies on introgression lines with unique agronomic traits in the genetic background of rice variety IR64: detection of QTLs for agronomic traits introgressed from a new plant type variety, IR66215-44-2-3	A.G. Tagle, D. Fujita, R. Santos, L.A. Ebron, M.J. Telebanco-Yanoria, Y. Fukuta, N. Kobayashi
P5-20	Identification and fine mapping of the leaf size QTL in rice	Sibin Yu, Peng Wang, Guilin Zhou
P5-21	Identification and transcriptome profiling of a high yielding KMR3 introgression line having yld2.1 sub-QTL3 from <i>Oryza rufipogon</i>	T Sudhakar, AK Batchu, R. Rajeshwari, AP Babu, BPM Swamy, BC Viraktamath, N Sarla
P5-22	Marker assisted introgression of QTL yld2.1 or sub QTL regions from <i>O.rufipogon</i> increases yield of KMR3 and derived hybrids	A Prasad Babu, M S Ramesha, T Sudhakar, BP Mallikarjuna Swamy, BC Viraktamath, N Sarla
P5-23	Method for fixing heterosis effect in plant hybrids in next generation and nature of heterosis in rice.	Eugeny Kharitonov, Yulia Goncharova, Vitaliy Gronin, Dmitriy Krutenko, Ekaterina Litvinova
P5-24	Morphological characterization and tillering behavior of reduced culm number mutants in rice (<i>Oryza sativa</i> L.)	Mojith Ariyaratne, Itsuro Takamure, Kiyoaki Kato

Poster Number	Title	Authors
P5-25	Overexpression of the transcription factor OsNAC10 in rice roots improves grain yield under drought conditions	Hye kyong Park, Jin Seo Jeong, Youn Shic Kim, Ju-Kon Kim
P5-26	QTLs for simultaneous heading and panicle layer uniformity in rice	Liang-Yong Ma, Jin-Song Bao, Chang-Deng Yang
P5-27	Yield, heterosis and agronomic traits in rice	Yoshimichi Fukuta, Seiji Yanagihara Hiroshi Tsunematsu, Sachiko Nama Ayumi Fukuo, Akiko Kawasaki, Kumihiko Konisho
P5-28	Identification of QTLs associated with heterosis in rice	Sang-Ho Chu, Wenzhu Jiang, Joong-Hyoun Chin, Young-Il Cho, Hee-Jong Koh
P5-29	Analysis of quantitative trait loci for differences in leaf temperature and water uptake rates in rice.	Takashi Ikka, Toshiyuki Takai, Kenji Suzuki, Tadashi Hirasawa, Toshio Yamamoto, Masahiro Yano
P5-30	Rice genotypes with high yield potential and short growth duration derived from a cross between <i>O. rufipogon</i> and Malaysian rice cultivar MR219 for irrigated ecosystem	Atiqur R Bhuiyan, Wickneswari Ratnam, Narimah Md Kairudin, Abdullah Md Zaon
P5-31	Comparative mapping of QTLs for yield and four components using DH and RIL populations in rice	Xinhua Zhao, Yang Qin, Huk-Suk Lee, Young-Hie Park, Tae-Heun Kin Baoyan Jia, Jae-Keun Sohn
P5-32	Gene pyrimiding to improve super green hybrid rice by molecular marker-aided selection	Yuqing He, Juming Tu, Gonghao Jiang, Sheng Chen, Jie Hu, Jinfeng Zhang, Xin Li, Lingqiang Wang, Yibo Li, Changjun Wu, Bin Yan, Qifa Zhang
P5-33	DNA markers in identification of restorers for development of quality rice hybrids	Ranjith Kumar Ellur, S Rajarathinam Manonmani Swaminathan, M Raveendran
P5-34	Genetic variability analysis of photoperiod– sensitive genic male sterile (PGMS) mutants induced by chemical and irradiation mutagenesis in rice	Majid Sattari, Mohammad Norouzi
	Session 6: Grain quality and	nutrition
P6-1	A SEM study of opaque grains produced by RNAi constructs against SBE IIb in rice.	S. Rahman, V.Butardo, M. Talbot, M. Morell
P6-2	A TILLING population designed for discovering mutants for nutritional quality in rice	Siriphat Ruengphayak, Somsak Saechoo, Nongnat Phoka, Ekawat Chaichumpoo, Siwaret Arikit, Supaporn Phromphan, Vinitchan Ruanjaichon, Anucha Plabpla, Ratchanee Kongkachuichai, Somvong Tragoonrung, Theerayut Toojinda, Apichart Vanavichit
P6-3	Analysis of genetic variation in grain arsenic	Gareth J Norton, Andy A Meharg, Adam H Price

Poster Number	Title	Authors
P6-4	Analysis of quantitative trait loci associated with eating quality using a RIL population in japonica rice	Soon-Wook Kwon, Young-Chan Cho, Yeon-Gyu Kim, Joohyun Lee, Hee-Jong Koh, Su-Noh Ryu
P6-5	Association of a BADH1 protein haplotype with rice aroma	A. Singh, P.K. Singh, R. Singh, A. Pandit, A.K. Mahto, D.K. Gupta, N.K. Singh, T.R. Sharma
P6-6	Cultivar variation In rice metabolite profiles: Implications for immune modulation and cancer.	Adam Heuberger, Rebecca Davidson, Matthew Lewis, Jan Leach, Henry Thompson, Elizabeth Ryan
P6-7	Effect of drought on yield and drought susceptiblity index for quality characters of promising rice genotypes	Ashutosh Kumar Mall, P Swain, S Das, ON Singh, A Kumar
P6-8	Enhancing the nutritional value of indica rice varieties by introgressing beta carotene (golden rice) gene	P. Biswas, A. Hossain, Thanda Tin, M. Inabangan, A. Evangelista, A. Das Padalkar, M. Joseph, J. Macabenta, V. Aldemita, V. Lacorte, L. Torrizo, M. Samia, J. Tan, R. Boncodin, G. Barry, P. Virk
P6-9	Gene expression of starch branching enzyme1 (RBE1) in transgenic rice	Ming-Mao Sun, Hye-Jung Lee, Yong-Guk Ju, Reneeliza Melgar, Ung-Han Yoon, Yong-Hwan Kim, Yong-Gu Cho
P6-10	Genetic relationship between grain yield and the contents of protein and fat in a recombinant inbred population of rice	Yong-Hong Yu Gang Li, Ye-Yang Fan, Ke-Qin Zhang, Jie Min, Zhi-We Zhu, Jie-Yun Zhuang
P6-11	Genetical control for traits related to endosperm in selected crosses of rice (<i>Oryza</i> <i>sativa</i> L.)	Nadali Babaian Jelodar and Sholeh Kiani
P6-12	Melting the secrets of gelatinisation temperature	R. Cuevas, V. Dara Daygon, H. Corpuz, R. Reinke, D.I. Waters, M. Fitzgerald
P6-13	Micronutrient enrichment of rice grain through dihaploid breeding	D. Grewal, P. Virk, G. Barry, M. Samia, M. Inabangan, T. Bharaj, V. Lopena
P6-14	Molecular mapping of a grain-size QTL on chromosome 3 in <i>Oryza longistaminata</i> and co-linear analysis in inter- intra specific populations	Jing Li, Jiawu Zhou, Peng Xu, Fei Yang, Xianneng Deng, Fengyi Hu, Dayun Tao
P6-15	Molecular mechanism of palatability difference in high- and low-quality japonica rice varieties	Ming-Mao Sun, Hye-Jung Lee, Reneeliza Melgar, Hee-Jong Woo, Hong-Sig Kim, Sun-Hee Woo, Yong Gu Cho
P6-16	Proteomic characterization of rice bran	Arthur Z. Wang, Mei-Yi Chou, Chih- Wei Liu, Chien-Chen Lai, Chang- Sheng Wang
P6-17	QTL mapping for iron and zinc content in polished rice grains using SSR markers	U. Susanto, V. Lopena, L. Torrizo, H Aswidinnoor, P.S. Virk

Poster Number	Title	Authors
P6-18	Quantitative trait loci (QTL) analysis associated with the gel consistency in rice	Tae Heon Kim, Kyung Min Kim, Jae Keun Shon
P6-19	Role of proteins in kernel elongation after cooking in aromatic rice	Anshuman Singh, Archana, Vikram Singh Gaur, Anita Bajpai, Anil Kumar, U.S.Singh
P6-20	Stability of QTLs for grain chalkiness characteristics in two reciprocal introgressive line (IL) populations in rice (<i>Oryza sativa</i> L.)	X. Zhao, M. Gamalinda, V.D. Daygon, K.L. McNally, F. Xie, R. Sackville Hamilton, M.A. Fitzgerald
P6-21	Study on relationship between plant yype and rice quality of temperate hybrid japonica rice in China	HAO Xian-Bin, MA Xiu-Fang HU Pei-Song, ZHANG Zhong-Xu1, SUI Guo-Min, HUA Ze-Tian
P6-22	Analysis of IR64 transgenic ferritin homozygous lines for iron fortification	W. Zhou1, C. Dueñas, N. Oliva, J. de Palma, M. Manzanilla, G. Borja, L. Torrizo, S. Poletti, P. Chadha- Mohanty, S. Huixia, P. Herve, G. Barry, I. Slamet-Loedin
P6-23	Enhancing lysine content in IR64 endosperm	I. Slamet-Loedin, K.R. Trijatmiko, J. Balindong, N. Oliva, E. Abrigo, M. Manzanilla, C. Duenas, P. Chadha- Mohanty, G. Barry
P6-24	Overexpression of nicotianamine synthase genes in high Fe/Zn rice and in lines overexpressing heterologous ferritin gene	K.R. Trijatmiko, W. Zhou, L. Torrizo, J. Balindong, J. de Palma, C. Duenas, N. Oliva, M. Manzanilla, M.G. Borja, P. Mohanty, A. Johnson G. Barry, I. Slamet-Loedin
P6-25	Bioinformatic assessment of any potential allergenicity of proteins being used to develop high lysine and high iron transgenic rice grains	Norman Oliva
P6-26	Characterization and genetic analysis of the embryo lethal mutant in rice	Back-Ki Kim, Wenzhu Jiang, Rihua Piao, Joohyun Lee, Tae-Ho Ham, Reflinur Basyirin, MD. Babul Akter, Hee-Jong Koh
P6-27	Rice shoot arsenic: Identification of QTLs and variation across a diverse germplasm collection	Daniel Lou-Hing, Gareth Norton, Andy Meharg, Adam Price
P6-28	RNAi-mediated variation of amylose content by targeting 3'-UTR region of GBSSI in japonica rice	Hyang-Mi Park, Yul-Ho Kim, Areum Chun, Man-Soo Choi, Im-Soo Choi, Jang-Yong Lee
P6-29	Detection of DNA markers associated with high protein content and enhancement of protein and grain yield in Indian fine grain genotypes for irrigated and aerobic situations	BC Keshava Murthy, Hanamareddy Biradar, N. Shashidhara, Ashwini Samak,R. Venkatesh Gandhi, Shailaja Hittalmani
P6-30	Molecular analyses of the copper transporter gene family in rice	Meng Yuan, Shiping Wang
P6-31	Proteomics study of the effect of high temperature on grain quality of rice at grain filling stage	Sea-Kwan Oh, Dea-Wook Kim, Jeong-Huei Lee, Ha-Cheol Hong, Randeep Rakwal, Yeon-Gyu Kim, Heung-Gu Hwang

Poster Number	Title	Authors
P6-32	Functional analysis of the rice low phytic acid 1 (<i>OsLpa1</i>) gene	Sang-Ic Kim, Thomas Tai
P6-33	QTL nalysis for eating quality in temperate Korean japonica rice variety Ilpumbyeo	Young-Chan Cho, Jung-Pil Suh, Jeong-Huei Lee, Jeong-Ju Kim, Jong-Min Jeong, Myeong-Ki Kim, Im-Soo Choi, Jeom-Ho Lee, Yeon- Gyu Kim
P6-34	Genetic divergence for grain quality traits in rice	Thiyagarajan Kattiannan
	Session 7: Bioinformati	ics
P7-1	Computational genomics approaches to understand the Fe/Zn uptake, redistribution and grain loading in rice (<i>Oryza sativa</i> L).	Shubha Banerjee, Girish Chandel
P7-2	Conservation of core promoter structures between orthologous rice and Arabidopsis genes	Bijayalaxmi Mohanty, Hock Chuan Yeo, Benildo G. de los Reyes, Dong Yup Lee
P7-3	Evaluation of next generation sequencing strategy for rice re-sequencing studies	Jehwan Park, Ji-woong Kim, YongJu Ahn, Eun Jeong Cho, Jeong Hun Beak, HyeRan Kim
P7-4	iBioT, A Rice Bioinformatics Toolbox: Development of a Virtual Machine-Based Analysis Suite	J. Detras, V. Ulat, G. Aquino, R. Mauleon
P7-5	Labkey: Using artificial intelligence for marker assisted breeding.	Batnini Heikel, Sillon Jean Francois, Bardet Sebastien, Royer Florence, Royer Frederic
P7-6	Molecular breeding of a tryptophan fortified rice via gene targeting	Hiroaki Saika, Haruko Onodera, Seiichi Toki
P7-7	Use of nucleic acid databases and protein structure databases to characterize protein families: the 10-member ricehexokinase family	Hasika Jayawickrema, Shamala Tirimanne, John Bennett
P7-8	Current status of the MSU rice genome annotation project	Kevin Childs, John Hamilton, Haining Lin, C. Robin Buell
P7-9	Genome sequence of african cultivated Rice, Oryza glaberrima	Pradeep Reddy Marri, Yeisoo Yu, Nick Sisneros, Dave Kudrna, Jose Luis Goicoechea, Seunghee Lee, Woojin Kim, Andrea Zuccolo, Michele Braidotti, Aswathy Sebastian, Kristi Collura, Marina Wissotski, Wolfgang Golser, Rod Wing, Steven Rounsley
P7-10	Comparison of the transcriptome profile between two cultivars reveal the subspecies- specific expressed genes	Hao-Kang Chin, Yue-ie Hsing, Ya- Ting Chao, Ai-Ling Hour
P7-11	Development of high resolution map in-silico of chromosomal region associated with brown spot tolerance using BAC/PAC clones derived molecular markers	Anil Kotasthane, Toshy Agrawal, Jawaharlal Katara

Poster Number	Title	Authors
P7-12	Conservation of core promoter structures between orthologous rice and Arabidopsis genes	Bijayalaxmi Mohanty, Hock Chuan Yeo, Benildo G. de los Reyes, Dong- Yup Lee
P7-13	Q-TARO: QTL annotation rice online database	Junichi Yonemaru, Toshio Yamamoto, Shuichi Fukuoka, Yusaku Uga, Kiyosumi Hori, Masahiro Yano
P7-14	Computational analysis of candidate exonic splicing regulatory motifs in rice	Ya-Ting Chao, Yan-Kai Wang, Ai- Ling Hour
	Session 8: Evolutionary genetics	and diversity
P8-1	Functional study of chromatin remodeling factor in regulating flowering in rice	Jungll Yang, Heebak Choi, Jin-mi Youn
P8-2	Genome-wide SNP discovery among temperate Japonica rice cultivars and its application	Kaworu Ebana, Hideki Nagasaki, Yasunori Nonoue
P8-3	SNP discovery through resequencing	Brian Scheffler, Andrew Farmer, Gregory May
P8-4	EcoTILLING the <i>Oryza</i> germplasm: Utility in targeted genotyping and phylogenetic analysis	M.E.B. Naredo, J. Cairns, M. Gamalinda, H. Wang, G. Atienza, M.D. Sanciangco, R.A. Melgar, A. Kumar, V. Ramaiah, R. Serraj, K.L. McNally
P8-5	Rice genetic diversity assessment of the RiceSNP set using the GoldenGate genotyping assay and VeraCode technology	C. Mojica, Ma. E. Naredo, K. Zhao, K. Wright, M. Thomson, B. Courtois, J.E. Leach, S. McCouch, H. Leung, K. McNally
P8-6	Assembling the sugarcane genome: Genome diversity and transposable element association	Van Sluys, Ma , Rossi M, Cruz Gm, Ochoa Ea, De Setta N, Gomes Ka, Abrantes E., Domingues, DS
P8-7	Characterization of bacterial blight of rice pathogen population in Thailand using molecular markers	Rasamee Dhitikiattipong, Nongrat Nilpanit , Nuttima Kositcharoenkul , Marichu A. Bernardo, Casiana M. Vera Cruz, Hei Leung
P8-8	Crossability within and between the wild species of <i>Oryza</i> series <i>Sativae</i> in Asia and Australia	M.N. Banaticla-Hilario, Ma. S.R. Almazan, Ma. E.B. Naredo, R.G. van den Berg, K.L. McNally, N. Ruaraidh Sackville Hamilton
P8-9	Development of SNP arrays for whole genome association mapping in rice	Chih-Wei Tung, Mark Wright, Georgia Eizenga, Liakat Ali, Teresa Hancock, Anna McClung, Jennifer Kimball, Keyan Zhao, Andy Reynolds, Carlos Bustamante, Susan McCouch
P8-10	Exploring of genomic conservation across wild <i>Oryza</i> species using RDA clones	J. Shim, O. Panaud, C. Vitte, M.S. Mendioro, D.S. Brar
P8-11	GEMO: an innovative project on evolutionary genomics of <i>Magnaporthe oryzae</i>	Tharreau D., Kroj T., Chiapello H., Aguileta G., Rodolphe F., Gendrault A., Lebrun M-H., Fournier E

Poster Number	Title	Authors
P8-12	Genetic dissection of interspecific hybrid sterility between <i>Oryza sativa</i> and <i>O. glaberrima</i> using multiple donors	Peng Xu, Fengyi Hu, Jiawu Zhou, Xianneng Deng, Jing Li, Sufeng Feng, Guangyun Ren, Zhi Zhang, Wei Deng, Dayun Tao
P8-13	Genetic studies on interspecific hybrid sterility between <i>Oryza sativa</i> and its AA genome species	Dayun Tao, Peng Xu, Jing Li
P8-14	Identification of favorable genes controlling important agronomic traits from <i>Oryza</i> <i>longistaminata</i>	Wei Deng, Jiawu Zhou, Peng Xu, Xiangneng Deng, Jing Li, Fengyi Hu, Guangyun Ren, Zhi Zhang, Yahong Luan, Dayun Tao
P8-15	Indica-japonica subspecies-specific InDel loci: a novel approach for understanding evolutionary relationships in genus <i>Oryza</i>	J.H. Chin, M.J. Thomson, W. Jiang, J. van Etten, SH. Chu, D.S Brar, H-J Koh
P8-16	Microsatellite marker and sequence variability for determination of genetic diversity and polymorphism in the red rice populations of Bangladesh	Sabrina M. Elias, Mahbub Hasan, Zeba I. Seraj
P8-17	Native rice (<i>Oryza sativa</i> L.) germplasm of Uttara Kannada, India, and their specialty uses	Surendra P, Ramesh Bhat, Nemichand Hanamaratti, Shivanna H
P8-18	Origin of rice landraces in Nepal: evidences from archeology, agro-morphology and isozyme polymorphism, population dynamic and geographical distribution	Resham Babu Amgai, Mishri Lal Sah, Sumitra Panta, Bal K. Joshi, Niranjan Prasad Adhikari, Madhusudan P. Upadhyaya
P8-19	Rice genetic resource in Nepal: Present status and prospective	R.K. Niroula, M.P. Upadhyay
P8-20	Submergence 1 C (Sub 1C)-like ERFs and submergence tolerance in wild relatives of rice with CC genomes	Raj Kumar Niroula, Chiara Pucciariello, Giacomo Novi, Pierdomenico Perata
P8-21	Genetic variation among INGER germplasm introductions released as varieties in various countries	C.J.A. Dilla, E. Redoña, D.A. Tabanao
P8-22	Reducing and managing the loss of genetic integrity of conserved germplasm	J. Rey, R. Nepomuceno, F. de Guzman, K. Zhao, K. Wright, M. Thomson, S. McCouch, N. Ruaraidh Sackville Hamilton, K.L. McNally
P8-23	Utilization of tropical japonica germplasm to enhance genetic diversity of indica rice varieties	A. Evangelista, V. Lopena, B. Romena, G.S. Khush, P. Virk
P8-24	Molecular characterization using SSR markers to detect possible loss of genetic integrity in rice Korean varieties	Sheila Mae Mercado, Yu Mi Choi, Robert Nepomuceno, Dennis Lozada, Flora de Guzman, Jessica Rey, Ruaraidh Sackville-Hamilton, Kenneth L. McNally

Poster Number	Title	Authors
P8-25	The T. T. Chang Genetic Resources Center: Advancing conservation, management and use of rice germplasm through molecular research	C.A. Mojica, Ma. E. Naredo, J. Rey, S.M. Quilloy-Mercado, Ma. C. Hilario-Banaticla, R. Nepomuceno, J. Rayco, B. Caspillo, X.Q. Zhao, R.S. Hamilton, K.L. McNally
P8-26	Genetic diversity of elite varieties of rice (<i>Oryza sativa</i> L.) identified from international trials	S.N. Sierra, E.D. Redoña, H.S. Galela, A.M.D. Adefuin, A.S. Punongbayan, M.C.S. Reamillo, J.C. Mendoza
P8-27	A genetic model for the female sterility barrier between Asian and African cultivated rice species	Andrea Garavito, Romain Guyot, Jaime Lozano, Frédérick Gavory, Sylvie Samain, Olivier Panaud, Joe Tohme, Alain Ghesquière, Mathias Lorieux
P8-28	Comparative sequence analysis of MONOCULM1-orthologous regions in 14 <i>Oryza</i> genomes	Fei Lu, Jetty S. S. Ammiraju, Abhijit Sanyal, Shengli Zhang, Rentao Song, Jinfeng Chen, Guisheng Li, Yi Sui, Xiang Song, Zhukuan Cheng, Antonio Costa de Oliveira5, Jeffrey L. Bennetzen, Scott A. Jackson, Rod A. Wing, Mingsheng Chen
P8-29	Metabolic variations detected in brown rice grains of germplasm based on GC-MS profiling	Qiaojun Lou, Chenfei Ma, Jia Zhou, Weiwei Wen, Guowan Xu, Hanwei Mei
P8-30	Evolutionary genomics of Asian rice domestication	Jeanmaire Molina, Jonathan Flowers, Michael Purugganan
P8-31	Genetic characterization of off-type rice plants collected from farmer's field	Jung-Hyun Park, Tae-Ho Ham, Wenzhu Jiang, Reflinur Basyirin, Hee-Jong Koh
P8-32	Genetic diversity and introgression in <i>O. sativa</i> : How domestication and breeding have shaped the rice genome	Keyan Zhao, Mark Wright, Michael Kovach, Andy Reynolds, Wricha Tyagi, Jennifer Kimball, Georgia Eizenga, Anna McClung, Md. Liakat Ali, Carlos Bustamante, Susan McCouch
P8-33 P8-34	RBIP (retrotransposon-based insertion polymorphism) analysis in cultivated and wild rice species, <i>Oryza sativa</i> and <i>O. rufipogon</i> Identifying phenotypic traits that indicate	Nobuyuki Ikeda, Romain Guyot, Olivier Panaud, Takashige Ishii Sasha Broadstone, Courtney Jahn,
P8-35	biomass production in early growth stage rice Genetic diversity analysis of Indonesian upland rice varieties using microsatellite markers	John McKay Aris Hairmansis, Santoso Santoso, Suwarno Suwarno, Anggiani Nasution, Erwina Lubis, Bambang Kustianto, Sobrizal Sobrizal, Sachiko Senoo Namai, Yoshimichi Fukuta

Poster Number	Title	Authors
P8-36	QTL apping of flag-leaf ligule length in rice and alignment with <i>ZmLG1</i> gene	Da-li Zheng, Jiang Hu, Guo-Jun Dong, Jian Liu, Long-Jun Zeng, Guang-Heng Zheng, Long-biao Guo, Qian Qian
P8-37	Analysis of somaclonal variations of rice mutant panel by next generation sequencing	Akio Miyao, Takako Ohnuma, Mariko Nakagome, Harumi Yamagata, Hiroyuki Kanamori, Hiroshi Ikawa, Akira Takahashi, Takashi Matsumoto, Hirohiko Hirochika
P8-38	Evaluation and efficiency of rice genome sequence reads from closely related species using the Next Generation Sequencer	Eli Kaminuma, Toshifumi Nagata, Hajime Ohyanagi, Takako Mochizuki, Yasukazu Nakamura, Tomoyuki Aizu, Asao Fujiyama, Atsushi Toyoda, Nori Kurata
P8-39	Exploring the wild rice genome for abiotic stress tolerance genes	Jaswinder Singh, Peggy Lemaux
P8-40	Assembling the Sugarcane genome: Genome diversity and transposableelement association.	V. A. Van Sluys, M. Rossi, G. M. Cruz, E. A. Ochoa, N. de Setta, K. A. Gomes, E. Abrantes, D. S. Domingues
P8-41	The integration and rearrangement of the pararetrovirus in the rice genomes	Ruifang Liu, Kanako O. Koyanagi, Yuji Kishima
P8-42	<i>Osyt</i> , a putative transcription factor, binds to the promoter of <i>Xa13</i> and affects <i>Xa13</i> expression	Ting Yuan
P8-43	Sequencing analysis of domestication-relate genes of the rice land races collected in Taiwan aborigines	Yi-fang Chen, Yue-le Hsing
P8-44	A diverse collection of purified rice (<i>O. sativa</i>) accessions evaluated for genetic and agro-morphological diversity between subpopulations	Georgia Eizenga, Liakat Ali, Melissa Jia, Jennifer Kimball, Carlos Bustamante, Susan McCouch, Anna McClung
	Session 9: Breeding applie	cations
P9-1	A population of 'TeQing'-into-'Lemont' chromosome segment substitution lines supports QTL discovery, fine-mapping, and determination of breeding values.	S. R. Pinson, G. Liu, M. Jia, Y. Jia, R. Fjellstrom, A. Sharma, Y. Wang, R. Tabien, Z. Li
P9-2	Analysis and molecular mapping of aerobic adaptation in rice (<i>Oryza sativa</i> L.)	Hongsheng Li, Peng Xu, Jing Li, Jiawu Zhou, Fengyi Hu, Wei Deng, Dayun Tao
P9-3	Assessment of genetic diversity in landraces of rice using morphological and RAPD markers	Ogunbayo S. A, Ojo D.K, Sie M, Gregorio G.B, Sanni K.A, Guei R.G, Nwilene F.E, Eklou A. Somado, Popoola A.R, Ariyo O.J, Tia D.D, Bachabi F, Shittu A.

Poster Number	Title	Authors
P9-4	Association study in Japanese rice population	Masanori Yamasaki, Osamu Ideta, Takuma Yoshioka, Kenji Asano, Makoto Matsuoka, Kiyosumi Hori, Hideki Nagasaki, Hiroyoshi Iwata, Kaworu Ebana
P9-5	Construction of DH population from indica- japonica cross and analysis of distorted segregation	Zhijuan Ji, Changdeng Yang
P9-6	Development of temperate cytoplasmic male sterile lines through three-line hybrids in rice	G. A. Parray, Asif B Shikari, A. G. Rather, Gulzar Singh, Amjad Hussain
P9-7	Development of two line hybrid rice varieties using <i>tms2</i> and utilizations of DNA markers to facilitate F1 hybrid seed production in Thailand.	Pattama Sirithunya, Tanee Sreewongchai, Piyavadee Nasaree, Saengchai Sriprakhon, Chanakarn Wongsaprom, Theerayut Toojinda
P9-8	Development of very early maturing rice through recurrent selection	Buang Abdullah, Sularjo
P9-9	Development of weed-competitive rice: phenotypic and genotypic analyses	O.S. Namuco, J.M. Ramos, T.R. Migo, D.S. Brar, D.E. Johnson
P9-10	Effects of delayed leaf senescence on yield and yield components of rice in near isogenic lines and populations	K.H. Kang, J.K.C. Yap, J.C. Ko
P9-11	Fine mapping of grain weight QTLs using near isogenic lines from a cross between <i>Oryza</i> sativa and <i>Oryza grandiglumis</i>	Ji-min Oh, Sang-Nag Ahn, Dong- Min Kim
P9-12	Gene stacking through MAS against multiple biotic stresses in rice	Narasimha Rao Gundimeda, Raj Kumar Joshi, Prasad Dokku, G. Das J.N.Reddy
P9-13	Genetic differentiation in the rice cultivar, Koshihikari, populations by transposon	Seiya Ishiguro, Kazunobu Ishii, Atsuko Takasu, Yoshio Sano, Yuji Kishima
P9-14	Genetic improvement of Basmati rice: conventional and molecular approaches	A. K. Singh, V. P. Singh, F. U. Zamar A. S. Hari Prasad, M. Nagarajan, S.S. Atwal, T. Mohapatra, N. K. Singh, K.V. Prabhu
P9-15	Identification of a new gene, dark tip embryo, dte9 using ILs from an interspecific cross between Hwayeong (<i>O. sativa</i>) and <i>O.</i> <i>rufipogon</i>	Shi-dong Ji, Sang-Nag Ahn, Feng- Xue Jin
P9-16	Inheritance of grain shattering trait in rice generated from interspecific and intraspecific crosses	Jimmy Lamo, Pangirayi Tongoona, John Derera
P9-17	Intergrating marker-assited selection into the conventional breeding procedure for improvement of rice(<i>Oryza sativa</i> L.) in the drought tolerance	Nguyen thi Lang, Bui chi Buu

Poster Number	Title	Authors
P9-18	Marker assisted development of higher yielding, bacterial blight resistant and dwarf version of traditional Basmati cultivars	Dharminder Bhatia, Yogesh Vikal, G.S.Mangat, Neeraja Sharma, Kuldeep Singh
P9-19	Marker-assisted backcross breeding to improve submergence tolerance in Thai glutinous rice cultivar RD6	Uraiwan Kotchasatit, Varapong Chamarerk, Anuchart Kotchasatit
P9-20	Marker-assisted NIL development of an <i>Oryza</i> sativa x <i>Oryza rufipogon</i> cross using SSRs, InDels and SNPs	Ize Imai, Jennifer A. Kimball, Shannon Moon, Anna M. McClung, Susan R. McCouch
P9-21	Molecular diversity analysis using SSR (Microsatellite) markers for traditional rice in Vietnam.	Nguyen thi Lang, Pham thi Be Tu, Trinh thi Luy, Bui Chi Buu, Nobuya Kobayashi, Yoshimichi Fukuta
P9-22	Molecular genetic strategy to develop super restorer lines in rice (<i>Oryza sativa</i> L.) using micro satellite markers	A. J. Ali, Y.M. Gao, L. Bazrkar, H.R. Soroush, Z. Li
P9-23	Multi-environment, multi-season selection under shuttle breeding network leads to identification of broad spectrum and location specific resistance to blast in upland rice	Mukund Variar, N P Mandal, V D Shukla, P K Sinha, J C Bhatt, R B S Sengar, S Panda, S P Das, R S Netam, S K Tripathi, P Perraju, A Mehta, A R Pathak, M K Barnwal, B N Singh, Casiana M VeraCruz
P9-24	<i>Oryza rufipogon</i> introgressions improve yield in the U.S. cultivar Jefferson	Jennifer Kimball, Shannon Moon, Susan McCouch, Anna McClung
P9-25	Rapid multiplexed analysis of perfect markers for important rice traits	Ardashir K Masouleh, Daniel LE Waters, Russell F Reinke, Robert J Henry
P9-26	Rice genotypes with high yield potential and short growth duration derived from a cross between <i>Oryza rufipogon</i> and Malaysian rice cultivar MR219 under irrigated conditions	Atiqur Rahman Bhuiyan, Wickneswari Ratnam, Narimah Md. Kairudin, Abdullah Md. Zain
P9-27	Saltol introgression into Bangladeshi mega rice variety BR11 through marker assisted backcrossing	Sazzadur Rahman, Aliya Ferdousi, Rafiqul Islam, Abdus Salam, Michae Thomson, Abdelbagi Ismail, Zeba Seraj
P9-28	Spotted leaf, very high tillering dwarf rice and other mutants generated in Texas breeding program	Rodante E. Tabien, Dhananjay Mani, Chersty L. Harper, Patrick M. Frank, Stanley Omar PB. Samonte, Emmanuel R. Tiongco
P9-29	Studies on quality selection index of early generation of rice hybrid	Jeng-Chung Lo
P9-30	The authentication of Taiwan rice using microsatellite DNA markers	Hsue-Yu Chuang, Huu-Shen Lur, Kae-Kang Hwu, Men-Chi Chang
P9-31	Transfer of specific genes controlling drought and salinity tolerance from <i>O. glaberrima</i> to <i>O.sativa</i> L.	Dong-min Kim, Sang-Nag Ahn, Ju- won Kang
P9-32	Integration and expression stability of transgenes in trangenic rice hybrids produced by particle bombardment	Zhao Yan, Huizhong Wang, Danian Huang

Poster Number	Title	Authors
P9-33	Contamination of conventional rice with genetically engineered rice – is segregation possible?	Janet Cotter, Arnaud Apoteker
P9-34	Over-expression of full-length <i>Brassica rapa</i> cDNA in transgenic rice through high-speed Agrobacterium-mediated transformation	Reneeliza Melgar, Sailila Abdula, Sung-Hee Kim, Hye-Jung Lee, Ming-Mao Sun, Kwon-Kyu Kang, Bo-Kyeong Kim, Dong-Sub Kim, Yong-Gu Cho
P9-35	Enhancing education in plant breeding for drought tolerance	John McKay
P9-36	What can computer simulation offer to MAS in rice breeding?	Guoyou Ye
P9-37	Genome wide mapping of quantitative trait loci for grain yield from <i>Oryza nivara</i> and identification of high yielding Swarna introgression lines	B.P. Mallikarjuna Swamy, K. Kaladhar, B.C. Viraktamath, N. Sarla
P9-38	Development of marker-free transgenic rice plants using clean T-DNA technology	Youn Shic Kim
P9-39	Developing Multiparent Advanced Generation Inter-Cross (MAGIC) populations using diverse genotypes to facilitate gene discovery for multiple traits in rice (<i>Oryza sativa</i> L.)	Rakesh Kumar Singh, Ediberto Redoña, Laza Marcelino, Sajise Andy Godwin, Bandillo Nonoy, Muyco Pauline Andrea, Caspillo Cesar, Hei Leung
P9-40	Embrapa rice breeding program: gains after twenty years of research	Adriano Castro, Flavio Breseguello, Orlando Moraes, Péricles Neves, Jaison Oliveira, Paulo Rangel, Tereza Borba
P9-41	IMINTA 16 a new mutation for herbicide resistance in rice.	Alberto Livore, Jose Luis Colazo, Alberto Prina, Bijay Singh, Robert Ascenzi, Sherry Whitt
P9-42	Genetic variation in biomass traits among 20 diverse rice varieties	Courtney Jahn, Janice Stephens, Bryant Mason, Sasha Broadstone, Daniel Bush, Hei Leung, John McKay, Jan Leach
P9-43	Farmers' participatory varietal selection: an essential supplementary component to conventional breeding and impact	S.B. Verulkar, A. Kumar, D. Payasi, P Dongre, A. L. Rathod, S. Tank, V.N. Mishra, M.L Sharma, A.K. Sarawgi, R.L. Pandey, S. Haefele
P9-44	Monsanto's Beachell-Borlaug International Scholars Program for PhD students in rice and wheat breeding	Edward Runge
P9-45	A soil surface rooting mutant is deficient in gravitropism of primary roots in rice	Eiko Hanzawa, Shinsei Nagai, Kazuhiro Sasaki, Akio Miyao, Hirohiko Hirochika, Mitsuhiro Obara, Atsushi Higashitani, Masahiko Maekawa, Tadashi Sato
P9-46	Genetic analysis of important characters in rice (<i>Oryza sativa</i> L.)	Gholam Ali Ranjbar, Leila Ahangar, Mohammad Nourozi

Poster Number	Title	Authors
P9-47	Scanning of rice cytoplasmic male sterile lines and their iso-nuclear maintainer lines via molecular markers	Ghorbanali Nematzadeh, Seyyed Hamidreza Hashemi-Petroudi
P9-48	Development of a platform for rice design based on single segment substitution lines (SSSL)	Guiquan Zhang, Ruizhen Zeng, Zemin Zhang, Xiaohua Ding, Haitao Zhu, Wentao Li, Ziqiang Liu
P9-49	Fine mapping of <i>hwh1</i> and <i>hwh2</i> , a set of complementary genes controlling hybrid breakdown in rice	Wenzhu Jiang, Kang-le Lee, Tae-Ho Ham, Sang-Ho Chu, Rihua Piao, Yongli Qiao, Joohyun Lee, Hee-Jong Koh
P9-50	Morphological and molecular characterization of aroma in Basmati and non Basmati aromatic rice cultivars	Kalmeshwer Gouda Patil, R. P Veeresh Gowda, H.E Shashidhar , R.S Kulkarni ,N.B Prakash
P9-51	Detection of quantitative trait loci (QTLs) controlling pre-harvest sprouting resistance using backcrossed populations of japonica rice cultivars	Kiyosumi Hori, Kazuhiko Sugimoto, Yasunori Nonoue, Nozomi Ono, Kazuki Matsubara, Utako Yamanouchi, Akira Abe, Yoshinobu Takeuchi, Masahiro Yano
P9-52	Genetic characterization of upland NERICA varieties	Yoshimichi Fukuta, Seiji Yanagihara, Hiroshi Tsunematsu, Sachiko Namai Ayumi Fukuo, Akiko Kawasaki , Kumihiko Konisho
P9-53	Rice improvement using African wild species: interspecific <i>Oryza sativa</i> L. x <i>Oryza barthii</i> Chev. for the upland ecology	Mande Semon, Kora Orou Kobi, Fatima Bachabi, Bosede Popoola
P9-54	Designing improved rice varieties for resource poor farmers in Africa using biotechnology tools	Marie Noelle Ndjiondjop
P9-55	The <i>Oryza</i> Map Alignment Project (OMAP) introgression lines for allelic diversity and new germplasm development	Paul Sanchez, Dave Kudrna, Georgia Eizenga, Rod Wing
P9-56	High yielding medium duration rice variety with new plant type characteristics for Tamil Nadu, India	Rajeswari Sivakami, Robin Sabariappan, K. Mohana Sundaram, R. Pushpam, Manonmani Swaminathan, D. Malarvizhi, K. Thiyagarajan
P9-57	Phenotyping and microsatellite marker based QTL analysis of new plant type II (japonica) x Taraori Basmati derived recombinant inbred lines	Sushma Jha, Hemani Sharma, Sunita Jain, Rajinder K. Jain
P9-58	Breeding market-oriented fine rice varieties suitable for monsoon season (Samba) in Tamil Nadu, India	Ramamoorthy Pushpam, S. Rajeshwari, S. Robin, K. Mohana Sundaram, S. Manonmani, D. Malarvizhi, K. Thiyagarajan, T. S. Raveendran

47

Poster Number	Title	Authors
P9-59	Map-based cloning of the ERECT PANICLE 3 gene in rice	Rihua Piao, Wenzhu Jiang, Tae-Ho Ham, Min-Seon Choi, Yongli Qiao, Sang-Ho Chu, Jung-Hyun Park, Mi- Ok Woo, Zhengxun Jin, Gynheung An, Joohyun Lee, Hee-Jong Koh
P9-60	Conventional breeding approach to condition transgenic resistance against rice tungro disease in popular high yielding rice cultivars.	Somnath Roy, Amrita Banerjee, Jayanta Tarafdar, Bijoy Kr. Senapati, Indranil Dasgupta
P9-61	Visualization of pedigree haplotypes in Japanese rice cultivars by genome- wide genotyping of single-nucleotide polymorphisms	Toshio Yamamoto, Jun-ichi Yonemaru, Hideki Nagasaki, Kaworu Ebana, Maiko Nakajima, Taeko Shibaya, Masahiro Yano
P9-62	Adoption of new aerobic rice varieties MAS- 946-1 and MAS 26 for water scarce region of Southern India	Venkatesh Gandhi, Rudresh, Shailaja Hittalmani
P9-63	Chemical induced mutant stock as a resource for rice genetics and breeding	Young Seop Shin, Ji Ung Jeung, Kyung Ho Kang, Im Soo Choi, Yeon Gyu Kim
P9-64	Comparison of phenotypic versus marker- assisted background selection during backcrossing in rice	Khandakar Iftekharuddaula, Muhammad Salam, Muhammad Newaz, Betrand Collard, Endang Septiningsih, Darlene Sanchez, Alvaro Pamplona, David Mackill
P9-65	Marker-assisted improvement of popular inbred rice with bacterial blight and tungro resistance	Marjohn Niño, Dindo Tabanao, Haizel Pastor, Jayfred Godoy, Alex Rigor, Edwin Rico Jr.
P9-66	Identification of consistent QTLs over genetic backgrounds and environments for physiological and productivity traits in upland rice (<i>Oryza sativa</i> L.)	N.GHanamaratti , P.M Salimath, C.H.M. Vijayakumar, Z.K.Li
P9-67	Nellore Mahsuri (NLR34449) - A high yielding fine grain, blast resistant, short duration rice variety for Andhra Pradesh, India.	Ramesh Babu Pottepalem,Y. Suryanarayana, D Ramachandra Reddy, P. Sreenivasulu Reddy, M. Gopinath, P. Raghava Reddy, V. Damodara Naidu, C.P.D. Rajan, P. Subbarami Reddy, S. Srinivasan, V. Visalakshmi, U. Vineetha
P9-68	Promising advanced breeding lines for drought –prone rain-fed lowland rice ecosystem of the Philippines	Tahere A. Sigari, Jay-Ar A. Andal, Desiree O. Roldan, Nenita V. Desamero

About Manila

Located on the western coast of the main island of Luzon, Metropolitan Manila (MM) is home to 12 million people of diverse cultures. Covering an area of 636 km², it consists of the cities of Manila, 11 other cities, and five smaller municipalities. It is the business and financial hub of the Philippines. The country's entertainment and recreation center, MM has the largest shopping destinations, famous museums, historical attractions, golf courses, and restaurants and bars that create a colorful nightlife.

Safety and Security Precautions

Like most major cities around the world, MM is relatively safe for visitors. However, travelers are advised to take the necessary precautions. Do not walk alone in unpopulated streets after dark or before dawn. Take a taxi to visit a restaurant or an entertainment place that is quite far from your hotel in the evenings. Try to walk in a group and do not draw unnecessary attention to yourself by wearing meeting badges, carrying large sums of money, or wearing jewelry. Lock your cash and valuables in your hotel safe when you do not need them.

Climate

The wet season in the Philippines generally ends in October though typhoons are still possible. Temperature ranges from 23 to 32 $^{\circ}$ C (73–90 $^{\circ}$ F). Humidity is 71–85%.

What to Wear

Light and casual clothes are recommended. When visiting churches and temples, propriety dictates that shorts and scanty clothing be avoided. For formal occasions, dinner jackets and ties are safe or you can wear the Philippine Barong Tagalog for men and cocktail dresses or long gowns for women.

Language

English and Filipino are the official languages. Most public utility drivers and street peddlers will understand and speak familiar English words.

Time Zone

Local time is GMT plus 8.

Visas

Visitors with valid passports and tickets for their onward journey do not require visas for a stay of up to 21 days. However, entry visas are required for restricted nationals, stateless persons, and those from countries that have no diplomatic relations with the Philippines. Please contact the Philippine Embassy/Consulate nearest you to check the countries on the visa required list.

Health Regulations

A certificate of vaccination against yellow fever is required for travelers coming from infected areas. Otherwise, visitors are not required to take any vaccination. Children less than 1 year old

are exempted but may be subject to isolation when necessary.

Hospitals are listed in the "Yellow Pages" of the local telephone directory. Health centers provide emergency medical attention in remote towns and cities.

Customs

Airline passengers must fill out the Baggage and Currency Declaration Form (BC Form 117) before disembarking to facilitate customs examination. For those with no currency or articles to declare, BC Form 117 signed by the Customs Officer serves as a gate pass. Visitors carrying more than US\$3,000 are to declare the amount at the Central Bank of the Philippines counter situated at the Customs area. Foreign currency taken out upon departure must not exceed the amount brought in. Departing passengers are not allowed to bring out more than PHP 1,000 in local currency. Imported items that are brought in and will not be taken out again are taxable. Departing passengers are permitted to carry foreign currency up to the amount brought in and declared.

Electronic equipment. Laptop computers and other electrical equipment for personal use may be brought into the country without duty if these items will be taken out of the country on departure.

Insurance

Please arrange for your own medical, travel, and personal effects insurance while attending RG6.

Airport Tax

Travel tax will be collected upon departure. The rate for international flights is PHP 750 or about US\$17. The rate for domestic flights depends on the destination and may change without prior notice.

Currency and Banking

The exchange rate fluctuates around US\$1 = PHP 46.

Traveler's checks and foreign currency notes of all major currencies can be exchanged at the airport, commercial banks, large department stores, major hotels, and authorized money-changing shops accredited by the Central Bank of the Philippines. Duty banks at the airport serve late flight arrivals and departures.

- Banking hours: 0900-1500, Monday to Friday.
- Currency: the Philippine peso (PHP) is the local currency, available in denominations of PHP 20, PHP 50, PHP 100, PHP 500, PHP 1,000, and PHP 2,000 notes; and PHP 10, PHP5, PHP1, 25¢, 10¢, and 5¢ coins.
- International credit cards such as Visa, Diners Club, Bank Americard, Master Card, and American Express are accepted in major establishments.

Currency Regulations

Visitors carrying more than US\$3,000 are requested to declare the amount at the Central Bank of the Philippines counter situated at the customs area. Foreign currency taken out upon departure must not exceed the amount brought in. Keep all exchange receipts for record purposes. Departing passengers may not take out more than PHP 1,000 in local currency.

Power Supply

The supply is mostly 220 volts, which is usually obtainable through a three-pin plug. US-made appliances of lesser voltage require a transformer. Adapters can be obtained locally but it is better to bring your own

Telecommunications

A GSM cell phone with international roaming capability will work for local and international calls. Pay phones are available in commercial centers. Calls can be made using coins or phone cards. International Direct Dialling (IDD) Service connects to over 120 countries worldwide. The international access code for the Philippines is +63. The outgoing code is 00 followed by the relevant country code (e.g., 001 for the United States). National Direct Dialing (NDD) service is also provided for connections to major cities in the Philippines. City/area codes are in use, e.g., (0)2 for Manila. Full telex, fax, and electronic mail facilities are widely available.

Local Transport

Metered and fixed-rate taxis are widely available in key cities nationwide. Air-conditioned taxis cost PHP 30 on the meter and an extra PHP 2 will be added for every 500 meters. Jeepneys and buses are inexpensive ways of getting around most places. It is suggested to always bring loose change when taking public transport.

In Metro Manila, the fastest way of commuting is via the railway system. LRT connects Monumento in the north to Baclaran in the south. MRT traverses the length of EDSA from North Avenue to Taft Avenue

Tipping

Although a service charge is included in the bill in hotels and restaurants, it is customary for customers to give tips. Tipping taxi drivers is not mandatory, but rounding the fare upward is a good rule of thumb. A minimum of PHP 20 tip will be highly appreciated by hairdressers, beauty parlor attendants, and hotel bellboys.

Shopping

Shops deal only in Philippine pesos but most malls have foreign currency exchange counters that accept major currencies. Most shopping centers are open from 1000 to 2100. Major credit cards are accepted but be prepared to show your passport to the cashier as proof of identity.

The malls carry import-quality local and high-quality designer brands of clothes and shoes for all ages, sporting goods, furniture, appliances, groceries, toiletries, and food and beverage.

They house state-of-the-art cinemas and auxiliary products and services such as amusement centers, spas, medical and dental facilities, bars, coffee shops, photo and video studios, salons, banks, and hobby shops, among others. When shopping in a public market, it is perfectly acceptable to haggle for the cheapest price.

Value-added Tax

A value-added tax is levied on hospitality services and on the market/quoted price of most goods offered for sale.

Dining

Filipino Cuisine is an exotic, tasteful blend of Oriental, European, and American culinary influences. There is a wide variety of fresh seafood and delectable fruits. There are first-class restaurants which offer gourmet specialties as well as Filipino Cuisine. Popular fast food chains are abundant as well.

Water

Bottled water is recommended and is available in most hotels, restaurants, resorts, supermarkets, and convenience stores.

Airport Transfer

The journey from the airport to the hotel varies depending on the time of day. You can travel by

Car

- accommodates up to a maximum of 4 passengers
- car rental Avis is available but slightly more expensive

Taxi

- accommodates up to a maximum of 4 passengers

Van

- accommodates up to a maximum of 10 passengers

The symposium offers a rare opportunity for you and your companion(s) to visit famous tourist destinations in the Philippines. If interested, you can contact Global-Link, our appointed travel and accommodation coordinator, at telephone number (632) 750-8588 and fax number (632) 750-8585. You can also address inquiries to Ms. Lanie Muriel at lanie.muriel@globallinkmp.com.

Below are descriptions and published rates (subject to change without prior notice) for tour packages of the most publicized destinations.

A. QUEZON CULINARY TOUR

Imagine visiting places that are a feast to the eyes, tasting food that more than satiates the palate and meeting creative people whose presence serve as balm to the spirit. Embark on a day's journey to enjoy the countryside and experience the unique hospitality only Filipinos can share. Journey with us through charming country inns, inspiring artists' studios, and off-the-beaten-path cafes and enjoy culinary masterpieces that use unique and modern renditions, interpretations, and combinations of classic Filipino dishes.

- Tour Facilitator
- Breakfast at SULYAP
- Lunch at Kusina Salud
- Afternoon snack at Ugu Bigyan's Pottery Garden
- Tagayan ritual
- All entrance and demo fees
- Bottled water or local fruit soda

Time: 0730-1900 Package Cost: PHP 6,000/pax (US\$130)

B. PAMPANGA CULINARY TOUR

Travel to the countryside and savor the unique taste of authentic Kapampangan cuisine. Visit a culinary museum, a farm in the foothills of Mt. Arayat where you will enjoy the culinary delights of Abe Restaurant right where it comes from—the gourmet province of Pampanga, and a spa village where you will surrender to the healing touch of nature.

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- Kapampangan breakfast at Camalig Restaurant
- Culinary Museum tours
- Cooking demo
- Lunch at Abe's Farm
- Spa treatment at Nurture Spa Village

Time: 0700-1730 Package Cost: PHP 6,000/pax (US\$130)

C. TAGAYTAY WELLNESS TOUR

Tagaytay is the perfect day-trip destination outside Manila. A scenic drive to the countryside treats the traveler's eye to sights of pineapple plantations, colorful fruit stands, flowers in bloom, ridges and mountains swathed in green, and a breathtaking view of the famous Taal Volcano—the world's smallest volcano. Enjoy a trip to an English Garden and restaurant, a honeybee farm with an array of natural products for sale, and a spa village featuring traditional Filipino huts where you can enjoy Asian spa treatments and come home feeling relaxed, refreshed, and full of sweet Tagaytay memories.

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- Sightseeing tour of Tagaytay

Optional Post-Symposium Tour

- Lunch at Sonya's Garden
- Spa treatment at Nurture Spa Village
- Bottled water or local fruit soda

Time: 0800-1800 Package Cost: PHP 6,000/pax (US\$130)

D. LAHAR SAFARI ADVENTURE

Puning Spa, situated at the edge of Sapangbato, Angeles, Pampanga, makes good use of the elements spewed by Mount Pinatubo by turning it into spa essentials that heal the body and relax the mind. Puning Spa can be reached using a 4x4 vehicle that travels through the spectacular lahar valley and unique mountain passes that will surely take your breath away.

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- 4x4 vehicle rentals
- Puning Spa fees
- Sand Spa treatment
- Filipino lunch buffet
- Bottled water or local fruit soda

Time: 0730-1600 Package Cost: PHP 6,000/pax (US\$130)

E. ULTRA LIGHT FLYING ADVENTURE

Just a short ride away from Manila is the Province of Pampanga. A haven for people who want to experience the leisurely pace of the countryside, Pampanga is also known for its sumptuous cuisine. Visit a farm in the foothills of Mt. Arayat, where you will be served a native Filipino lunch, explore a cultural village, enjoy a relaxing spa treatment in a traditional Filipino hut, and experience the thrill of flying hundreds of feet up in the air and hover above farms and the Clark Airbase in a 10-minute ultra-light flight ride—all in this unforgettable Pampanga adventure!

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- Ultra-light airplane ride
- Lunch at Abe's Farm
- Spa treatment at Nurture Spa Village
- Bottled water or local fruit soda

Time: 0800-1730 Package Cost: PHP 6,000/pax (US\$130)

F. INTRAMUROS HERITAGE TOUR

Intramuros or the "walled city" is the best place to view Spanish colonial architecture from 1571. It is one of the most well-preserved medieval cities in the world. Within its walls is a Light and Sound Museum, an interactive attraction featuring life-sized dioramas that showcase the historic events in the Philippines from the pre-Hispanic period and Spanish colonization to the life of Dr. Jose Rizal, the Philippine National Hero. Shop for masterfully crafted native products at Mananzan Handicrafts and enjoy lunch at Barbara's, a 19th-century establishment in a Spanish setting that specializes in Spanish and native dishes.

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- Sightseeing tour around the city
- Light and Sound Museum entrance fee*

Optional Post-Symposium Tour

- Buffet lunch in a 19th-century Spanish setting**
- Fort Santiago entrance fee
- Tour of Intramuros
- Bottled water or soda

* Closed on Mondays. Will be replaced by a tour of the San Agustin Church and Museum.

** Mon-Fri only. A la carte applies for Sat and Sun.

Time: 0800-1300 Package Cost: PHP 2,500/pax (US\$54)

G. INTRAMUROS WITH SUNSET DINNER CRUISE

After an interesting Intramuros Heritage Tour, unwind as you experience the captivating sunset of Manila Bay. An extraordinary sight to behold because of the different play of colors decorating the sky. Watching the Manila Bay sunset through a Sunset Dinner Cruise is a truly pleasurable experience in the city. Seize the moment while riding on to the sunset with a romantic dinner cruise and enjoy a full-course meal and live entertainment that showcases true Filipino talent onboard the yacht. Perfect for couples looking for a romantic setting, the Sunset Dinner Cruise is an affair to remember.

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- Sightseeing tour around the city
- Light and Sound Museum entrance fee
- Fort Santiago entrance fee
- Tour of Intramuros
- Sunset Dinner Cruise
- Bottled water or soda

* Closed on Mondays. Will be replaced by a tour of the San Agustin Church and Museum.

Time: 1200-1945 Package Cost: PHP 3,000/pax (US\$65)

H. INTRAMUROS WITH CULTURAL DINNER SHOW

After an interesting Intramuros Heritage Tour, experience a cultural dinner at Barbara's restaurant. Barbara's is a 19th-century establishment that specializes in Spanish and native dishes. Enjoy a show featuring talented Filipino singers who will serenade you and dancers who will introduce you to the many colorful and creative Filipino dances that originated from the barrios and other parts of the Philippines. The old-world charm of Barbara's adds a nice touch to the whole cultural experience.

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- Sightseeing tour around the city
- Light and Sound Museum entrance fee
- Fort Santiago entrance fee
- Tour of Intramuros
- Cultural Show
- Buffet dinner at Barbara's
- Bottled water or soda

* Closed on Mondays. Will be replaced by a tour of the San Agustin Church and Museum.

Time: 1200-2030 Package Cost: PHP 3,000/pax (US\$65)

Optional Post-Symposium Tour

I. GOLF PACKAGE TOUR

Swing your best club and enjoy a great round of golf in Manila. One thing that makes Philippine golfing unique from the standard experiences abroad is that all the courses have caddies. The caddies pull the clubs, they help with club selection as they eventually figure out how long a hitter a player is, and, best of all, they give advice on the game.

You will be treated to a rolling tour of some of Manila's or Makati's best attractions before proceeding to Club Intramuros or the Philippine Army Golf Courses, where you will spend a half day of leisurely golf.

- Tour Facilitator
- Pick-up and drop-off services at partner hotels
- Golf trainer
- Golf rental kit
- Caddy
- Bottled water or local fruit soda

Time: 0800-1330 Package Cost: PHP 6,000/pax (US\$130)

J. SPA & SHOPPING SPREE

Travelers can indulge in purely pleasurable activities as they treat themselves to one fine day in Manila, one of the greatest spa and shopping destinations in Asia. From power-spending down to flea market bargaining, one will never run out of options while exploring the malls of Manila, the uncontested shopper's paradise. Tourists can pamper their body after a day of discoveries as they unwind and get the treatment they deserve amidst a relaxing atmosphere of a serene spa. What an exciting way to spend a day in the city!

- Tour Facilitator
- · Pick-up and drop-off services at partner hotels
- Sightseeing tour around the city
- Buffet lunch at Kamayan Restaurant
- Spa treatment at NEO Spa
- Bottled water or local fruit soda

Time: 0900-1800 Package Cost: PHP 4,000/pax (US\$87)

Rice science for a better world

The International Rice Research Institute (IRRI) has been a global leader in rice science since 1960. As an independent and nonprofit organization we have helped farmers boost their rice production through improved rice varieties and other technologies.

With about 1,300 staff, we recruit our science leaders internationally and they are among the best in the world in their fields. IRRI staff embody and uphold our values that include

- scientific excellence, integrity, and accountability
- innovation and creativity
- cultural diversity and gender consciousness
- teamwork and partnership

Climate change, food security, poverty, and resource availability will all make producing enough affordable rice to feed the world a challenge. We believe rice science can help find solutions.

Join us... www.irri.org

IRRI INTERNATIONAL RICE RESEARCH INSTITUTE

Imagine a world...

...where there is an affordable, nutritious source of food for all people.

Affymetrix offers more than 50 products to support agricultural biotechnology research. Our gene expression, genotyping, and resequencing arrays and assays are increasingly being used to discover biomarkers for crop disease resistance, livestock breed selection, and food nutrition and safety.

Visit www.affymetrix.com to learn more.

©2009 Affymetrix, Inc. All rights reserved. For research use only. Not for use in diagnostic procedures.

